×

Conservative, high-order particle-mesh scheme with applications to advection-dominated flows. (English) Zbl 1440.76079

Summary: By combining concepts from particle-in-cell (PIC) and hybridized discontinuous Galerkin (HDG) methods, we present a particle-mesh scheme for flow and transport problems which allows for diffusion-free advection while satisfying mass and momentum conservation – locally and globally – and extending to high-order spatial accuracy. This is achieved via the introduction of a novel particle-mesh projection operator which casts the particle-mesh data transfer as a PDE-constrained optimization problem, permitting advective flux functionals at cell boundaries to be inferred from particle trajectories. This optimization problem seamlessly fits in a HDG framework, whereby the control variables in the optimization problem serve as advective fluxes in the HDG scheme. The resulting algebraic problem can be solved efficiently using static condensation. The performance of the scheme is demonstrated by means of numerical examples for the linear advection-diffusion equation and the incompressible Navier-Stokes equations. The results demonstrate optimal spatial accuracy, and when combined with a \(\theta\) time integration scheme, second-order temporal accuracy is shown.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FEniCS
Full Text: DOI

References:

[1] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 8, 1703-1759 (2005)
[3] Sigalotti, L. D.G.; Klapp, J.; Rendón, O.; Vargas, C. A.; Peña-Polo, F., On the kernel and particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 108, 242-255 (2016) · Zbl 1381.76280
[4] Lind, S. J.; Stansby, P. K., High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion, J. Comput. Phys., 326, 290-311 (2016) · Zbl 1373.76257
[5] Suchde, P.; Kuhnert, J.; Schröder, S.; Klar, A., A flux conserving meshfree method for conservation laws, Internat. J. Numer. Methods Engrg., 112, 3, 238-256 (2017) · Zbl 07867140
[7] Cockburn, B.; Kanschat, G.; Schötzau, D., The local discontinuous Galerkin method for linearized incompressible fluid flow: a review, Comput. & Fluids, 34, 4-5, 491-506 (2005) · Zbl 1138.76382
[8] Labeur, R. J.; Wells, G. N., A Galerkin interface stabilisation method for the advection – diffusion and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 196, 49, 4985-5000 (2007) · Zbl 1173.76344
[9] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J. Comput. Phys., 228, 9, 3232-3254 (2009) · Zbl 1187.65110
[10] Egger, H.; Schöberl, J., A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA J. Numer. Anal., 30, 4, 1206-1234 (2010) · Zbl 1204.65133
[11] Labeur, R. J.; Wells, G. N., Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 34, 2, 889-913 (2012) · Zbl 1391.76344
[12] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng. 1, 307, 339-361 (2016) · Zbl 1439.76081
[13] Rhebergen, S.; Wells, G. N., A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 1-18 (2018) · Zbl 1397.76077
[14] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 4, 1147-1170 (2011) · Zbl 1391.76353
[15] Evans, M.; Harlow, F.; Bromberg, E., The particle-in-cell method for hydrodynamic calculations, Tech. rep. (1957), Los Alamos Scientific Laboratory
[16] Sulsky, D.; Chen, Z.; Schreyer, H., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1-2, 179-196 (1994) · Zbl 0851.73078
[17] Brackbill, J.; Ruppel, H., FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 2, 314-343 (1986) · Zbl 0592.76090
[18] Burgess, D.; Sulsky, D.; Brackbill, J., Mass matrix formulation of the FLIP particle-in-cell method, J. Comput. Phys., 103, 1, 1-15 (1992) · Zbl 0761.73117
[19] Love, E.; Sulsky, D., An unconditionally stable, energy-momentum consistent implementation of the material-point method, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 3903-3925 (2006) · Zbl 1118.74054
[20] Jiang, C.; Schroeder, C.; Teran, J., An angular momentum conserving affine-particle-in-cell method, J. Comput. Phys., 338, 137-164 (2017) · Zbl 1415.74052
[23] Maljaars, J. M.; Labeur, R. J.; Möller, M., A hybridized discontinuous Galerkin framework for high-order particle – mesh operator splitting of the incompressible Navier-Stokes equations, J. Comput. Phys., 358, 150-172 (2018) · Zbl 1381.76190
[24] Wendland, H., Scattered data approximation, Vol. 17 (2004), Cambridge University Press
[25] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[26] Marchuk, G. I., Splitting and alternating direction methods, Handb. Numer. Anal., 1, Part I, 197-462 (1990) · Zbl 0875.65049
[27] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 44-47, 6011-6045 (2006) · Zbl 1122.76072
[28] Liu, J. G.; Liu, J.; Pego, R. L., Stable and accurate pressure approximation for unsteady incompressible viscous flow, J. Comput. Phys., 229, 9, 3428-3453 (2010) · Zbl 1307.76029
[29] Rhebergen, S.; Wells, G. N., Analysis of a hybridized/interface stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 55, 4, 1982-2003 (2017) · Zbl 1426.76299
[30] Logg, A.; Mardal, K.-A.; Wells, G. N., Automated solution of differential equations by the finite element method, Vol. 84, 724 (2012), Springer Science & Business Media · Zbl 1247.65105
[31] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 2, 627-665 (1996) · Zbl 0852.76057
[32] Bochev, P.; Ridzal, D.; Peterson, K., Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations, J. Comput. Phys., 257, 1113-1139 (2013) · Zbl 1351.90126
[33] Kuzmin, D.; Basting, S.; Shadid, J. N., Linearity-preserving monotone local projection stabilization schemes for continuous finite elements, Comput. Methods Appl. Mech. Engrg., 322, 23-41 (2017) · Zbl 1439.65114
[34] Sigalotti, L. D.G.; Klapp, J.; Sira, E.; Meleán, Y.; Hasmy, A., SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers, J. Comput. Phys., 191, 2, 622-638 (2003) · Zbl 1134.76423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.