×

The time-dependent generalized membrane shell model and its numerical computation. (English) Zbl 1440.74212

Summary: In this paper, we discuss the time-dependent generalized membrane shell model, which has not been addressed numerically in literature. We show that the solution of this model exists and is unique. We first provide a numerical method for the time-dependent generalized membrane shell. Concretely, we semi-discretize the space variable and fully discretize the problem using time discretization by the Newmark scheme. The corresponding numerical analyses of existence, uniqueness, stability and convergence with a priori error estimates are given. Finally, we present numerical experiments with a portion of the conical shell and a portion of the hyperbolic shell to verify theoretical convergence results and demonstrate the effectiveness of the numerical scheme.

MSC:

74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74K15 Membranes

Software:

FreeFem++
Full Text: DOI

References:

[1] Carugo, D.; Aron, M.; Sezgin, E., Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles, Biomaterials, 113, 105-117 (2017)
[2] You, Z.; Hu, M.; Tuan-Mu, H.; Hu, J., Fabrication of poly(glycerol sebacate) fibrous membranes by coaxial electrospinning: Influence of shell and core solutions, J. Mech. Behav. Biomed., 63, 220-231 (2016)
[3] Jiang, F.; Nie, Y.; Yin, L., Core – shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries, J. Membr. Sci., 510, 1-9 (2016)
[4] Cimenler, U.; Joseph, B.; Kuhn, J. N., Effect of zeolite membrane shell thickness on reactant selectivity for hydrocarbon steam reforming using layered catalysts, Energy Fuel, 30, 5300-5308 (2016)
[5] Chappa, S.; Mhatre, A. M.; Adya, V. C., Egg-shell membrane mimicking synthetic polymer membrane supported palladium nanoparticles for catalyzing reduction of uranyl(VI) ions, Appl. Catal. B, 203, 53-64 (2017)
[6] Ciarlet, P. G.; Lods, V., Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations, Arch. Ration. Mech. Anal., 136, 119-161 (1996) · Zbl 0887.73038
[7] Ciarlet, P. G.; Lods, V., Asymptotic analysis of linearly elastic shells: “Generalized membrane shells”, J. Elasticity, 43, 147-188 (1996) · Zbl 0891.73044
[8] Mardare, C., Asymptotic analysis of linearly elastic shells: error estimates in the membrane case, Asymptot. Anal., 17, 31-51 (1998) · Zbl 0939.74039
[9] Mardare, C., The generalized membrane problem for linearly elastic shells with hyperbolic or parabolic middle surface, J. Elasticity, 51, 145-165 (1998) · Zbl 0921.73205
[10] Ciarlet, P. G., Mathematical Elasticity, Vol. III: Theory of Shells (2000), North-Holland: North-Holland Amsterdam · Zbl 0953.74004
[11] Ciarlet, P. G.; Mardare, C.; Shen, X., Donati compatibility conditions for membrane and flexural shells, Anal. Appl., 13, 685-705 (2015) · Zbl 1344.49056
[12] Hansbo, P.; Larson, M. G., Finite element modeling of a linear membrane shell problem using tangential differential calculus, Comput. Methods Appl. Mech. Engrg., 270, 1-14 (2014) · Zbl 1296.74054
[13] Tepole, A. B.; Kabaria, H.; Bletzinger, K. U.; Kuhl, E., Isogeometric Kirchhoff-Love shell formulations for biological membranes, Comput. Methods Appl. Mech. Engrg., 293, 328-347 (2015) · Zbl 1423.74530
[14] Liu, C.; Tian, Q.; Yan, D.; Hu, H., Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF, Comput. Methods Appl. Mech. Engrg., 258, 81-95 (2013) · Zbl 1286.74062
[15] Xiao, L. M., Asymptotic analysis of dynamic problems for linearly elastic shells-justification of equations for dynamic membrane shells, Asymptot. Anal., 17, 121-134 (1998) · Zbl 0968.74045
[16] Ye, J., Asymptotic analysis of dynamic problem for linearly elastic generalized membrane shells, Asymptot. Anal., 36, 47-62 (2003) · Zbl 1137.74401
[17] Ciarlet, P. G., An Introduction to Differential Geometry, with Applications to Elasticity (2005), Springer Verlag: Springer Verlag Heidelberg · Zbl 1100.53004
[18] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam, (reprinted as Vol. 40 in the series “Classics in Applied Mathematics”, SIAM, Philadelphia, 2002) · Zbl 0383.65058
[19] Raviart, P. A.; Thomas, J. M., Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles (1983), Masson: Masson Paris · Zbl 0561.65069
[20] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1997), Springer: Springer Berlin and Heidelberg
[21] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications Vol. II (1972), Springer: Springer Berlin, Heidelberg · Zbl 0227.35001
[22] Zhu, S.; Dede, L.; Quarteroni, A., Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation, ESAIM Math. Model. Numer. Anal., 51, 1197-1221 (2017) · Zbl 1381.65086
[23] Hecht, F., New development in FreeFem ++, J. Numer. Math., 220, 251-265 (2012) · Zbl 1266.68090
[24] X. Wang, Computer Aided Parameteric Design and Finite Element Analysis on Bioprosthetic Heart Valve (Shandong University Master’s Thesis), Jinan, 2008.; X. Wang, Computer Aided Parameteric Design and Finite Element Analysis on Bioprosthetic Heart Valve (Shandong University Master’s Thesis), Jinan, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.