×

On temporal graph exploration. (English) Zbl 1440.68186

Halldórsson, Magnús M. (ed.) et al., Automata, languages, and programming. 42nd international colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015. Proceedings. Part I. Berlin: Springer. Lect. Notes Comput. Sci. 9134, 444-455 (2015).
Summary: A temporal graph is a graph in which the edge set can change from step to step. The temporal graph exploration problem TEXP is the problem of computing a foremost exploration schedule for a temporal graph, i.e., a temporal walk that starts at a given start node, visits all nodes of the graph, and has the smallest arrival time. We consider only temporal graphs that are connected at each step. For such temporal graphs with \(n\) nodes, we show that it is \(\mathbf {NP}\)-hard to approximate TEXP with ratio \(O(n^{1-{\varepsilon} })\) for any \({\varepsilon} >0\). We also provide an explicit construction of temporal graphs that require \({\Theta} (n^2)\) steps to be explored. We then consider TEXP under the assumption that the underlying graph (i.e. the graph that contains all edges that are present in the temporal graph in at least one step) belongs to a specific class of graphs. Among other results, we show that temporal graphs can be explored in \(O(n^{1.5}k^2\log n)\) steps if the underlying graph has treewidth \(k\) and in \(O(n\log ^3 n)\) steps if the underlying graph is a \(2 {\times} n\) grid. We also show that sparse temporal graphs with regularly present edges can always be explored in \(O(n)\) steps.
For the entire collection see [Zbl 1316.68014].

MSC:

68R10 Graph theory (including graph drawing) in computer science
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q25 Analysis of algorithms and problem complexity
90C27 Combinatorial optimization

References:

[1] Ajtai, M.; Komlós, J.; Szemerédi, E., Largest random component of a k-cube, Combinatorica, 2, 1, 1-7 (1982) · Zbl 0489.05053 · doi:10.1007/BF02579276
[2] Berman, KA, Vulnerability of scheduled networks and a generalization of Menger’s theorem, Networks, 28, 3, 125-134 (1996) · Zbl 0865.90048 · doi:10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
[3] Bui-Xuan, B.; Ferreira, A.; Jarry, A., Computing shortest, fastest, and foremost journeys in dynamic networks, Int. J. Found. Comput. Sci., 14, 2, 267-285 (2003) · Zbl 1075.68545 · doi:10.1142/S0129054103001728
[4] Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. In: Proc. 25th Conference on IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2011), pp. 209-218. IEEE (2011) · Zbl 1364.68049
[5] Casteigts, A.; Flocchini, P.; Quattrociocchi, W.; Santoro, N., Time-varying graphs and dynamic networks, IJPEDS, 27, 5, 387-408 (2012)
[6] Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. CoRR abs/1504.07976 (2015). arXiv: 1504.07976 · Zbl 1440.68186
[7] Flocchini, P.; Mans, B.; Santoro, N.; Dong, Y.; Du, D-Z; Ibarra, O., Exploration of periodically varying graphs, Algorithms and Computation, 534-543 (2009), Heidelberg: Springer, Heidelberg · Zbl 1272.05196 · doi:10.1007/978-3-642-10631-6_55
[8] Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco (1979) · Zbl 0411.68039
[9] Karlin, A.R., Nelson, G., Tamaki, H.: On the fault tolerance of the butterfly. In: Proc. 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 125-133. ACM (1994) · Zbl 1344.68037
[10] Kempe, D.; Kleinberg, JM; Kumar, A., Connectivity and inference problems for temporal networks, J. Comput. Syst. Sci., 64, 4, 820-842 (2002) · Zbl 1015.68005 · doi:10.1006/jcss.2002.1829
[11] Kesten, H., The critical probability of bond percolation on the square lattice equals \({1\over 2}\), Comm. Math. Phys., 74, 1, 41-59 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[12] Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994) · Zbl 0825.68144
[13] Liu, C.; Wu, J., Scalable routing in cyclic mobile networks, IEEE Trans. Parallel Distrib. Syst., 20, 9, 1325-1338 (2009) · doi:10.1109/TPDS.2008.218
[14] Mertzios, GB; Michail, O.; Chatzigiannakis, I.; Spirakis, PG; Fomin, FV; Freivalds, R.; Kwiatkowska, M.; Peleg, D., Temporal network optimization subject to connectivity constraints, Automata, Languages, and Programming, 657-668 (2013), Heidelberg: Springer, Heidelberg · Zbl 1334.68027 · doi:10.1007/978-3-642-39212-2_57
[15] Michail, O.: An introduction to temporal graphs: An algorithmic perspective. CoRR abs/1503.00278 (2015). arXiv: 1503.00278 · Zbl 1331.68154
[16] Michail, O.; Spirakis, PG; Csuhaj-Varjú, E.; Dietzfelbinger, M.; Ésik, Z., Traveling salesman problems in temporal graphs, Mathematical Foundations of Computer Science 2014, 553-564 (2014), Heidelberg: Springer, Heidelberg · Zbl 1426.90218
[17] Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report 396, Department of Mathematics, Techni-sche Universität Berlin (1994)
[18] Scheideler, C.; Alt, H.; Ferreira, A., Models and techniques for communication in dynamic networks, STACS 2002, 27-49 (2002), Heidelberg: Springer, Heidelberg · Zbl 1054.68011 · doi:10.1007/3-540-45841-7_2
[19] Shannon, C.: Presentation of a maze-solving machine. In: Proc. 8th Conference of the Josiah Macy Jr. Found (Cybernetics), pp. 173-180 (1951)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.