×

New skein invariants of links. (English) Zbl 1440.57006

Summary: We study new skein invariants of links based on a procedure where we first apply a given skein relation only to crossings of distinct components, so as to produce collections of unlinked knots. We then evaluate the resulting knots using the given invariant. A skein invariant can be computed on each link solely by the use of skein relations and a set of initial conditions. The new procedure, remarkably, leads to generalizations of the known skein invariants. We make skein invariants of classical links, \(H[R], K[Q]\) and \(D[T]\), based on the invariants of knots, \(R, Q\) and \(T\), denoting the regular isotopy version of the Homflypt polynomial, the Kauffman polynomial and the Dubrovnik polynomial. We provide skein theoretic proofs of the well-definedness of these invariants. These invariants are also reformulated into summations of the generating invariants \((R, Q, T)\) on sublinks of a given link \(L\), obtained by partitioning \(L\) into collections of sublinks. These summations exhibit the tight and surprising relationship between our generalized skein-theoretic procedure and the structure of sublinks of a given link.

MSC:

57K10 Knot theory

References:

[1] Aicardi, F. and Juyumaya, J., Markov trace on the algebra of braids and ties, Moscow Math. J.16(3) (2016) 397-431. · Zbl 1385.57003
[2] Aicardi, F. and Juyumaya, J., Tied links, J. Knot Theory Ramifications25(9) (2016) 1641001. · Zbl 1352.57006
[3] Aicardi, F. and Juyumaya, J., Kauffman type invariants for tied links, J. Math. Z.289(1-2) (2017) 567-591, https://doi.org/10.1007/s00209-017-1966-0. · Zbl 1395.57005
[4] Alexander, J. W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30(2) (1928) 275-306. · JFM 54.0603.03
[5] Brandt, R., Lickorish, W. B. R. and Millett, K. C., A polynomial invariant for unoriented knots and links, Invent. Math.84 (1986) 563-573. · Zbl 0595.57009
[6] M. Chlouveraki, D. Goundaroulis, A. Kontogeorgis and S. Lambropoulou, A categorification of the \(\theta \)-invariant, preprint (2019), arXiv:1904.07794. · Zbl 1485.57014
[7] Chlouveraki, M., Juyumaya, J., Karvounis, K. and Lambropoulou, S., Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebra, Int. Math. Res. Notices (2018) 74 p. https://doi.org/10.1093/imrn/rny013 · Zbl 1492.57003
[8] Chlouveraki, M. and Lambropoulou, S., The Yokonuma-Hecke algebras and the Homflypt polynomial, J. Knot Theory Ramifications22(14) (2013) 1350080. · Zbl 1295.57015
[9] Chlouveraki, M. and Pouchin, G., Determination of the representations and a basis for the Yokonuma-Temperley-Lieb algebra, Algebras Representation Theory18 (2015). · Zbl 1335.20004
[10] Chlouveraki, M. and Pouchin, G., Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra, Math. Z.285(3) (2017) 1357-1380. · Zbl 1372.20010
[11] Chlouveraki, M. and Poulain D’Andecy, L., Representation theory of the Yokonuma-Hecke algebra, Adv. Math.259 (2014) 134-172. · Zbl 1293.20007
[12] Chlouveraki, M. and D’Andecy, L. Poulain, Markov trace on affine and cyclotomic Yokonuma-Hecke algebras, Int. Math. Res. Not.2016(14) (2016) 4167-4228. https://doi.org/10.1093/imrn/rnv257 · Zbl 1402.20006
[13] Chmutov, S., Jablan, S., Karvounis, K. and Lambropoulou, S., On the knot invariants from the Yokonuma-Hecke algebras, J. Knot Theory Ramifications25(9) (2016) 1641004 (28 pages). · Zbl 1355.57008
[14] Conway, J. H., An enumeration of knots and links and some of their algebraic properties, 1970 Computational Problems in Abstract Algebra (Pergamon, Oxford, 1967), pp. 329-358. · Zbl 0202.54703
[15] I. Diamantis and S. Lambropoulou, The Braid Approach to the HOMFLYPT Skein Module of the Lens Spaces \(L(p,1)\), in Algebraic Modeling of Topological and Computational Structures and Applications, THALES, Athens, Greece, July 1-3, 2015, Springer Proceedings in Mathematics & Statistics (PROMS), Vol. 219, eds. S. Lambropoulou, P. Stefaneas, D. Theodorou and L. H. Kauffman (Springer, Cham, 2017), https://doi.org/10.1007/978-3-319-68103-0. · Zbl 1411.57025
[16] Eliahou, S., Kauffman, L. H. and Thistlethwaite, M. B., Infinite families of links with trivial Jones polynomial, Topology42 (2003) 155-169. · Zbl 1013.57005
[17] Ernst, C. and Sumners, D. W., Solving tangle equations arising in a DNA recombination model, Math. Proc. Cambridge Philos. Soc.126(1) (1999) 23-36. · Zbl 0916.57013
[18] Flores, M., Juyumaya, J. and Lambropoulou, S., A Framization of the Hecke algebra of type B, J. Pure Appl. Algebra222(4) (2018) 778-806. · Zbl 1380.57013
[19] Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millett, K. C. and Ocneanu, A., A new polynomial invariant of knots and links, Bull. AMS12 (1985) 239-246. · Zbl 0572.57002
[20] Gabrovšek, B. and Mroczkowski, M., The Homlypt skein module of the lens spaces \(L(p,1)\), Topol. Appl.175 (2014) 72-80. · Zbl 1298.57012
[21] D. Goundaroulis, ‘Framization of the Temperley-Lieb algebra and related link invariants’, PhD thesis, Department of Mathematics, National Technical University of Athens (2014).
[22] Goundaroulis, D., Juyumaya, J., Kontogeorgis, A. and Lambropoulou, S., The Yokonuma-Temperley-Lieb algebra, Banach Center Pub.103 (2014) 73-95. · Zbl 1336.57007
[23] Goundaroulis, D., Juyumaya, J., Kontogeorgis, A. and Lambropoulou, S., Framization of the Temperley-Lieb algebra, Math. Res. Lett.24(2) (2017) 299-345, http://dx.doi.org/10.4310/MRL.2017.v24.n2.a3. · Zbl 1418.57007
[24] Goundaroulis, D. and Lambropoulou, S., A new two-variable generalization of the Jones polynomial, J. Knot Theory Ramifications28(11) (2019) 1940005, 24 pp. · Zbl 1432.57024
[25] Goundaroulis, D. and Lambropoulou, S., Classical link invariants from the framizations of the Iwahori-Hecke algebra and the Temperley-Lieb algebra of type \(A\), J. Knot Theory Ramifications26(9) (2017), https://doi.org/10.1142/S0218216517430052. · Zbl 1377.57008
[26] Hoste, J. and Kidwell, M., Dichromatic link invariants, Trans. Amer. Math. Soc.321(1) (1990) 197-229. · Zbl 0702.57002
[27] https://en.wikipedia.org/wiki/Kinetoplast.
[28] Jacon, N. and D’Andecy, L. Poulain, An isomorphism theorem for Yokonuma-Hecke algebras and applications to link invariants, Math. Z.283 (2016) 301-338. · Zbl 1398.20007
[29] S. Johri, Z. Papic, P. Schmitteckert, R. N. Bhatt and F. D. M. Haldane, Probing the geometry of the Laughlin state, preprint (2015), arXiv:1512.08698. · Zbl 1456.81488
[30] Jones, V. F. R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.)12(1) (1985) 103-111. · Zbl 0564.57006
[31] Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Ann. Math.126(2) (1987) 335-388. · Zbl 0631.57005
[32] J. Juyumaya, A partition Temperley-Lieb algebra, preprint (2013), arXiv:1304.5158 [math.QA].
[33] Juyumaya, J. and Lambropoulou, S., An invariant for singular knots, J. Knot Theory Ramifications18(6) (2009) 825-840. · Zbl 1188.57010
[34] Juyumaya, J. and Lambropoulou, S., An adelic extension of the Jones polynomial, in The Mathematics of Knots, eds. Banagl, M. and Vogel, D., , Vol. 1 (Springer, 2009), pp. 825-840. · Zbl 1188.57010
[35] J. Juyumaya and S. Lambropoulou, Modular framization of the BMW algebra, preprint (2010), arXiv:1007.0092v1 [math.GT]. · Zbl 1326.57016
[36] Juyumaya, J. and Lambropoulou, S., \(p\)-adic framed braids II, Adv. Math.234 (2013) 149-191. · Zbl 1266.57011
[37] Juyumaya, J. and Lambropoulou, S., On the framization of knot algebras, in New Ideas in Low-Dimensional Topology, Series on Knots and Everything, eds. Kauffman, L. H. and Manturov, V. (World Scientific, 2014), arXiv:1406.6849v1 [math.GT]. · Zbl 1326.57016
[38] K. Karvounis, Private communication (2017).
[39] K. Karvounis and S. Lambropoulou, Link invariants from the Yokonuma-Hecke algebras, in Algebraic Modeling of Topological and Computational Structures and Applications, THALES, Athens, Greece, July 1-3, 2015, Springer Proceedings in Mathematics & Statistics (PROMS), Vol. 219, eds. S. Lambropoulou, P. Stefaneas, D. Theodorou and L. H. Kauffman (Springer, 2017), https://doi.org/10.1007/978-3-319-68103-0. · Zbl 1386.57019
[40] Kauffman, L. H., State models and the Jones polynomial, Topology26(3) (1987) 395-407. · Zbl 0622.57004
[41] Kauffman, L. H., An invariant of regular isotopy, Trans. Am. Math. Soc.318 (1990) 417-471. · Zbl 0763.57004
[42] Kauffman, L. H., State models for link polynomials, Enseignement Math.36(2) (1990) 1-37. · Zbl 0711.57003
[43] Kauffman, L. H., Knots and Physics, 4th edn., , Vol. 53 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013). · Zbl 1266.57001
[44] Kauffman, L. H. and Lambropoulou, S., Skein invariants of links and their state sum models, Symmetry9 (2017) 226. https://doi.org/10.3390/sym9100226 · Zbl 1423.57030
[45] Kim, S., On the generalization of Conway algebra, J. Knot Theory Ramifications27(2) (2018) 1850014. · Zbl 1385.57016
[46] Lambropoulou, S., Solid torus links and Hecke algebras of B-type, Quantum Topology, ed. Yetter, D.N. (World Scientific Press, 1994), pp. 225-245. · Zbl 0884.57004
[47] Lambropoulou, S., Knot theory related to generalized and cyclotomic Hecke algebras of type \(B\), J. Knot Theory Ramifications8(5) (1999) 621-658. · Zbl 0933.57007
[48] Lickorish, W. B. R. and Millett, K. C., A polynomial invariant of oriented links, Topology26(1) (1987) 107-141. · Zbl 0608.57009
[49] D. Michieletto, D. Marenduzzo and M. S. Turner, Topology Regulation during Replication of the Kinetoplast DNA, preprint (2014), arXiv:1408.4237 [cond-mat.soft].
[50] A. Ocneanu, A polynomial invariant for knots — A combinatorial and algebraic approach, Preprint MSRI, Berkeley (1984).
[51] D’Andecy, L. Poulain and Wagner, E., The HOMFLYPT polynomials of sublinks and the Yokonuma-Hecke algebras, Proc. Roy. Soc. Edinburgh Sect. A148(6) (2018) 1269-1278. · Zbl 1404.57028
[52] Przytycki, J. H., Skein modules of 3-manifolds, Bull. Pol. Acad. Sci.: Math.39(1-2) (1991) 91-100. · Zbl 0762.57013
[53] Przytycki, J. H. and Traczyk, P., Invariants of links of Conway type, Kobe J. Math.4 (1987) 115-139. · Zbl 0655.57002
[54] Ricca, R. L. and Liu, X., HOMFLYPT polynomial is the best quantifier for topological cascades of vortex knots, Fluid Dyn. Res.50 (2018) 011404.
[55] M. W. Scheeler, D. Kleckner, D. Proment, G. L. Kindlmann and W. T. M. Irvine, Helicity conservation by flow across scales in reconnecting vortex links and knots, preprint (2014), arXiv:1404.6513 [physics.flu-dyn].
[56] Thistlethwaite, M., Links with trivial Jones polynomial, J. Knot Theory Ramifications10 (2001) 641-643. · Zbl 1001.57022
[57] V. G. Turaev, The Conway and Kauffman modules of the solid torus, Zap. Nauchn. Sem. Lomi167 (1988) 79-89. English translation: J. Soviet Math. (1990) 2799-2805. · Zbl 0706.57004
[58] Yang, Z., Knot invariants with multiple skein relations, J. Knot Theory Ramifications27(2) (2018) 1850017. · Zbl 1423.57033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.