×

Weight decompositions of Thom spaces of vector bundles in rational homotopy. (English) Zbl 1440.55010

In [Proc. Am. Math. Soc. 144, No. 4, 1829–1840 (2016; Zbl 1336.55008)], Y. Félix et al. described a rational homotopy theoretic model for the Thom space \(\mathrm{Th}(\xi)\) of an oriented vector bundle \(\xi\colon E \to B\) with nilpotent base. The geometric goal there was to specialize to the tangent bundle in order to obtain a (conjectural) Lie model for the configuration space of two points. Here, the authors develop a model without the assumptions of orientability and nilpotency with the ultimate geometric goal of understanding the structure of the Thom space when \(B\) is a smooth complex algebraic variety and then using that to analyze the problem of realizing cohomology classes by submanifolds. For this, the authors recall the notion of a positive weight decomposition on a model (i.e. essentially a decomposition of each of the constituent vector spaces in each degree of the commutative differential graded algebra model that is compatible with the differential and the product in an appropriate sense) and discover a homogeneity condition on the Euler class that implies the Thom space has a positive weight decomposition when the base space does. Furthermore, they show that a smooth complex variety has a positive weight decomposition so that the Thom space \(\mathrm{Th}(\xi)\) of a vector bundle \(\xi\colon E \to B\) with \(B\) a smooth complex variety has positive weights. The point of all this is that spaces (or more precisely, their models) with positive weights may be identified as so-called universal spaces with the property that, under some finiteness assumptions, maps on rationalizations may be lifted to integral space maps up to multiplication by an integer. Thom’s original criterion for representing a cohomology class \(c \in H^k(M;\mathbb{Z})\) asked for a lift of \(c\colon M \to K(\mathbb{Z},k)\) to \(M \to\mathrm{Th}(\xi_u)\) where \(\xi_u\) is the appropriate universal bundle. Here the authors start with a vector bundle \(\xi\colon E \to B\) with \(B\) a smooth complex variety and \(\theta\colon B \to BSO(n)\) a classifying map. They show that a class \(c \in H^k(M;\mathbb{Z})\) is represented by a submanifold via the structure map \(\theta\) exactly when the lifting (as above) is only through \(M \to\mathrm{Th}(\xi)_\mathbb{Q}\), the rationalization of the Thom space of \(\xi\). The point is that, since \(\mathrm{Th}(\xi)_\mathbb{Q}\) has positive weights, a rational map may be lifted to the integral space \(\mathrm{Th}(\xi)\), thus obtaining the Thom criterion.

MSC:

55P62 Rational homotopy theory
55R25 Sphere bundles and vector bundles in algebraic topology

Citations:

Zbl 1336.55008

References:

[1] Body, R.; Douglas, R., Rational homotopy and unique factorization, Pac. J. Math., 75, 2, 331-338 (1978) · Zbl 0403.55017 · doi:10.2140/pjm.1978.75.331
[2] Buijs, U., Félix, Y., Murillo, A., Tanré, D.: The infinity Quillen functor, Maurer-Cartan elements and DGL realizations. arXiv:1702.04397
[3] Buijs, U.; Gutiérrez, Jj, Homotopy transfer and rational models for mapping spaces, J. Homotopy Relat. Struct., 11, 2, 309-332 (2016) · Zbl 1361.55014 · doi:10.1007/s40062-015-0107-x
[4] Body, R.; Mimura, M.; Shiga, H.; Sullivan, D., \(p\)-universal spaces and rational homotopy types, Comment. Math. Helv., 73, 3, 427-442 (1998) · Zbl 0905.55008 · doi:10.1007/s000140050063
[5] Booth, Pi, Fibrations and classifying spaces: overview and the classical examples, Cahiers Topologie Géom. Différentielle Catég., 41, 3, 162-206 (2000) · Zbl 0991.55010
[6] Bott, R.; Tu, Lw, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics (1982), New York: Springer, New York · Zbl 0496.55001
[7] Burlet, O., Cobordismes de plongements et produits homotopiques, Comment. Math. Helv., 46, 277-288 (1971) · Zbl 0221.57017 · doi:10.1007/BF02566845
[8] Cirici, J.; Guillén, F., \(E_1\)-formality of complex algebraic varieties, Algebr. Geom. Topol., 14, 5, 3049-3079 (2014) · Zbl 1301.32019 · doi:10.2140/agt.2014.14.3049
[9] Cirici, J., Horel, G.: Mixed Hodge structures and formality of symmetric monoidal functors, Ann. Sci. Éc. Norm. Supér (to appear) · Zbl 1457.32080
[10] Cantero Morán, F.; Randal-Williams, O., Homological stability for spaces of embedded surfaces, Geom. Topol., 21, 1387-1467 (2017) · Zbl 1383.55011 · doi:10.2140/gt.2017.21.1387
[11] Deligne, P.: Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40, 5-57 (1971) · Zbl 0219.14007
[12] Deligne, P.: Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44, 5-77 (1974) · Zbl 0237.14003
[13] Félix, Y.; Halperin, S.; Thomas, J-C, Rational Homotopy Theory, Graduate Texts in Mathematics (2001), New York: Springer, New York · Zbl 0961.55002
[14] Félix, Y.; Oprea, J.; Tanré, D., Lie-model for Thom spaces of tangent bundles, Proc. Am. Math. Soc., 144, 4, 1829-1840 (2016) · Zbl 1336.55008 · doi:10.1090/proc/12829
[15] Hain, R., The de Rham homotopy theory of complex algebraic varieties II, K-Theory, 1, 5, 481-497 (1987) · Zbl 0657.14004 · doi:10.1007/BF00536980
[16] Halperin, S.; Stasheff, J., Obstructions to homotopy equivalences, Adv. Math., 32, 3, 233-279 (1979) · Zbl 0408.55009 · doi:10.1016/0001-8708(79)90043-4
[17] Huber, A., Mixed Motives and Their Realization in Derived Categories (1995), Berlin: Springer, Berlin · Zbl 0938.14008
[18] Loday, J-L; Vallette, B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2012), Heidelberg: Springer, Heidelberg · Zbl 1260.18001
[19] Morgan, John W., The algebraic topology of smooth algebraic varieties, Publications mathématiques de l’IHÉS, 48, 1, 137-204 (1978) · Zbl 0401.14003 · doi:10.1007/BF02684316
[20] Navarro-Aznar, V., Sur la théorie de Hodge-Deligne, Invent. Math., 90, 1, 11-76 (1987) · Zbl 0639.14002 · doi:10.1007/BF01389031
[21] Papadima, Ş., The rational homotopy of Thom spaces and the smoothing of homology classes, Comment. Math. Helv., 60, 4, 601-614 (1985) · Zbl 0592.57025 · doi:10.1007/BF02567434
[22] Peters, C.; Steenbrink, J., Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics (2008), Berlin: Springer, Berlin · Zbl 1138.14002
[23] Quillen, D., Rational homotopy theory, Ann. Math. (2), 90, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[24] Rudyak, Y., Tralle, Aleksy: On Thom spaces, Massey products, and nonformal symplectic manifolds, Int. Math. Res. Notices, 10, 495-513 (2000) · Zbl 0972.53052 · doi:10.1155/S1073792800000271
[25] Shiga, H., Rational homotopy type and self-maps, J. Math. Soc. Jpn., 31, 3, 427-434 (1979) · Zbl 0405.55014 · doi:10.2969/jmsj/03130427
[26] Stong, Re, Notes on Cobordism Theory, Mathematical Notes (1968), Princeton: Princeton University Press, Princeton · Zbl 0181.26604
[27] Sullivan, Dennis, Infinitesimal computations in topology, Publications mathématiques de l’IHÉS, 47, 1, 269-331 (1977) · Zbl 0374.57002 · doi:10.1007/BF02684341
[28] Thom, R., Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28, 17-86 (1954) · Zbl 0057.15502 · doi:10.1007/BF02566923
[29] Voevodsky, V.: \({\bf A}^1\)-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), no. Extra Vol. I, pp. 579-604 (1998) · Zbl 0907.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.