×

Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation. II. (English) Zbl 1440.37056

Let \(S = S_{g, b}\) be a surface of genus \(g\) with \(b\) boundary components. Suppose that \(3g-3+b > 1\). The curve complex \(\mathcal C(S)\) is the flag complex whose vertices are (isotopy classes of) non-null homotopic and nonperipheral simple closed curves. A set of \(k\) distinct isotopy classes defines a \(k\)-simplex if any pair can be represented by disjoint curves. Given a sequence \(\{\gamma_n\}\) of curves, we can ask about the geometry of how this sequence sits inside the curve complex. A natural question is: when does this sequence approximate a geodesic in the curve complex?
A part of the main result of this paper gives a sufficient condition for this sequence to be an infinite quasi-geodesic. Exploiting connections between the geometry of the curve complex and the Teichmüller and Weil-Petersson geometries of Teichmüller space, several interesting corollaries are obtained about the behaviors of limit sets of Teichmüller and Weil-Petersson geodesics. In particular, the authors construct Teichmüller geodesics with non-simply connected limit sets, and give sufficient for recurrence of Weil-Petersson geodesics in moduli space in terms of their ending laminations.
For Part I, see [the second author et al., “Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation”, Preprint, arXiv:1312.2305].

MSC:

37F34 Teichmüller theory; moduli spaces of holomorphic dynamical systems
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37C86 Foliations generated by dynamical systems
53D25 Geodesic flows in symplectic geometry and contact geometry
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30F60 Teichmüller theory for Riemann surfaces

References:

[1] J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523-1578. · Zbl 1145.57016
[2] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139-162. · Zbl 0653.32022
[3] J. Brock, H. Masur and Y. Minsky, Asymptotics of Weil-Petersson geodesics. I: Ending laminations, recurrence, and flows, Geom. Funct. Anal. 19 (2010), no. 5, 1229-1257. · Zbl 1216.32007
[4] J. Brock, H. Masur and Y. Minsky, Asymptotics of Weil-Petersson geodesics. II: Bounded geometry and unbounded entropy, Geom. Funct. Anal. 21 (2011), no. 4, 820-850. · Zbl 1227.32018
[5] J. Brock and B. Modami, Recurrent Weil-Petersson geodesic rays with minimal non-uniquely ergodic ending laminations, Geom. Topol. 19 (2015), no. 6, 3565-3601. · Zbl 1332.30067
[6] P. Buser, Geometry and spectra of compact Riemann surfaces, Mod. Birkhäuser Class., Birkhäuser, Boston 2010. · Zbl 1239.32001
[7] R. D. Canary, D. B. A. Epstein and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham 1984), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge (1987), 3-92. · Zbl 0612.57009
[8] J. Chaika, H. Masur and M. Wolf, Limits in PMF of Teichmüller geodesics, preprint (2014), .
[9] Y.-E. Choi and K. Rafi, Comparison between Teichmüller and Lipschitz metrics, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 739-756. · Zbl 1132.30024
[10] Y.-E. Choi, K. Rafi and C. Series, Lines of minima and Teichmüller geodesics, Geom. Funct. Anal. 18 (2008), no. 3, 698-754. · Zbl 1206.30057
[11] M. T. Clay, C. J. Leininger and J. Mangahas, The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn. 6 (2012), no. 2, 249-278. · Zbl 1245.57004
[12] B. Farb, A. Lubotzky and Y. Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), no. 3, 581-597. · Zbl 1025.20023
[13] A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66-67, Société Mathématique de France, Paris 1979. · Zbl 0406.00016
[14] D. Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009), no. 2, 1017-1041. · Zbl 1165.57015
[15] F. P. Gardiner, Teichmüller theory and quadratic differentials, Pure Appl. Math. (New York), John Wiley & Sons, New York 1987. · Zbl 0629.30002
[16] F. Gardiner and H. Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209-237. · Zbl 0702.32019
[17] H. Hakobyan and D. Saric, Limits of Teichmüller geodesics in the universal Teichmüller space, preprint (2015), . · Zbl 1394.30029
[18] J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221-274. · Zbl 0415.30038
[19] N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr. 115, American Mathematical Society, Providence 1992. · Zbl 0776.57001
[20] A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR 211 (1973), 775-778.
[21] E. Klarreich, The boundary at infinity of the curve complex, preprint 1999.
[22] C. Leininger, A. Lenzhen and K. Rafi, Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. reine angew. Math. (2015), 10.1515/crelle-2015-0040. · Zbl 1392.37032 · doi:10.1515/crelle-2015-0040
[23] A. Lenzhen, Teichmüller geodesics that do not have a limit in PMF, Geom. Topol. 12 (2008), no. 1, 177-197. · Zbl 1189.30086
[24] A. Lenzhen and H. Masur, Criteria for the divergence of pairs of Teichmüller geodesics, Geom. Dedicata 144 (2010), 191-210. · Zbl 1193.30066
[25] G. Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119-135. · Zbl 0522.57027
[26] J. Mangahas, A recipe for short-word pseudo-Anosovs, Amer. J. Math. 135 (2013), no. 4, 1087-1116. · Zbl 1277.57019
[27] B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381-386. · Zbl 0587.30043
[28] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169-200. · Zbl 0497.28012
[29] H. Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183-190. · Zbl 0508.30039
[30] H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387-442. · Zbl 0780.30032
[31] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103-149. · Zbl 0941.32012
[32] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902-974. · Zbl 0972.32011
[33] Y. N. Minsky, Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996), no. 2, 249-286. · Zbl 0861.32015
[34] B. Modami, Prescribing the behavior of Weil-Petersson geodesics in the moduli space of Riemann surfaces, J. Topol. Anal. 7 (2015), no. 4, 543-676. · Zbl 1326.30043
[35] R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. of Math. Stud. 125, Princeton University Press, Princeton 1992. · Zbl 0765.57001
[36] K. Rafi, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005), 179-202. · Zbl 1082.30037
[37] K. Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007), no. 3, 936-959. · Zbl 1129.30031
[38] K. Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014), no. 5, 3025-3053. · Zbl 1314.30082
[39] W. Thurston, Geometry and topology of 3-manifolds, Princeton University lecture notes (1986), http://www.msri.org/publications/books/gt3m.
[40] W. A. Veech, Interval exchange transformations, J. Anal. Math. 33 (1978), 222-272. · Zbl 0455.28006
[41] S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2) 109 (1979), no. 2, 323-351. · Zbl 0441.30055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.