×

Solitary travelling auto-waves in fractional reaction-diffusion systems. (English) Zbl 1440.35341

Summary: In this article we study properties of solitary auto-waves in nonlinear fractional reaction-diffusion systems. As an example, the generalised FitzHugh-Nagumo model with time-fractional derivatives is considered. By a linear stability analysis and computer simulation it is shown that the order of the fractional derivative can substantially change the properties of solitary auto-waves and significantly enrich nonlinear system dynamics. The main properties of solitary travelling wave solutions, including the shape of the waves, the domain of their existence, as well as the parameters of their propagation in fractional reaction-diffusion systems, are investigated.

MSC:

35R11 Fractional partial differential equations
35C07 Traveling wave solutions
35C08 Soliton solutions
92C20 Neural biology

Software:

sysdfod; DFOC

References:

[1] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1-77 (2000) · Zbl 0984.82032
[2] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations (2006), Elsevier · Zbl 1092.45003
[3] Uchaikin, V., Fractional derivatives for physicists and engineers (2012), Springer
[4] Mainardi, F., Fractional calculus and waves in linear viscoelasticity (2010), Imperial College Press · Zbl 1210.26004
[5] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D.; Feliu, D., Fractional-order systems and controls: fundamentals and applications (2010), Springer · Zbl 1211.93002
[6] Tarasov, V., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (2010), Springer · Zbl 1214.81004
[7] Sabatier, J.; Agrawal, O. P.; Tenreiro Machado, J. A., Advances in fractional calculus: theoretical developments and applications in physics and engineering (2010), Springer · Zbl 1116.00014
[8] Petras, I., Fractional-order nonlinear systems: modeling, analysis and simulation (2011), Springer: Springer Heidelberg · Zbl 1228.34002
[9] Tavazoei, M.; Haeri, M.; Jafari, S., Taming single input chaotic system by fractional based controller: theoretical and experimental study, Circ Syst Sign Proc, 28, 625-647 (2009) · Zbl 1173.37334
[10] Pinto, M. A.; Tenreiro Machado, J. A., Complex order van der Pol oscillator, Nonlin Dyn, 65, 247-254 (2011)
[11] Pinto, M. A.; Tenreiro Machado, J. A., Complex-order forced van der Pol oscillator, J Vibr Contr, 18, 2201-2209 (2012)
[12] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalised Mittag-Leffler stability, Comput Math Appl, 59, 1810-1821 (2010) · Zbl 1189.34015
[13] Ahmad, B.; Nieto, J., Existence results for a coupled system of nonlinear fractional differential equations, Comput Math Appl, 58, 1838-1843 (2009) · Zbl 1205.34003
[14] Luchko, Yu., Maximum principle for the general time-fractional diffusion equation, J Math Anal Appl, 351, 218-223 (2009) · Zbl 1172.35341
[15] Balachandran, K.; Trujillo, J., The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Anal: Theor Methods Appl, 72, 4587-4593 (2010) · Zbl 1196.34007
[16] Henry, B.; Langlands, T.; Wearne, S., Turing pattern formation in fractional activator-inhibitor systems, Phys Rev E, 72, 026101 (2005)
[17] Gafiychuk, V.; Datsko, B., Pattern formation in a fractional reaction-diffusion system, Phys A, 365, 300-306 (2006)
[18] Baeumer, B.; Kovacs, M.; Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput Math Appl, 55, 2212-2226 (2008) · Zbl 1142.65422
[19] Abad, S.; Yuste, B.; Lindenberg, K., Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks, Phys Rev E, 81, 031115 (2010)
[20] Shkilev, V., A necessary condition for the emergence of diffusion instability in media with nonclassical diffusion, J Exp Theor Phys, 110, 162-169 (2010)
[21] Haubold, H. J.; Mathai, A. M.; Saxena, R. K., Further solutions of fractional reaction-diffusion equations in terms of the H-function, J Comput Appl Math, 235, 1311-1316 (2011) · Zbl 1206.35245
[22] Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities (2010), Springer
[23] Gafiychuk, V.; Datsko, B., Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives, J Comput Nonlin Dyn, 7, 031001 (2012)
[24] Datsko, B.; Gafiychuk, V., Complex nonlinear dynamics in subdiffusive activator-inhibitor systems, Commun Nonlinear Sci Numer Simul, 17, 1673-1680 (2012) · Zbl 1244.35158
[25] Gafiychuk, V.; Datsko, B., Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems, Phys Rev E, 75 (2007), R055201-1-R055201-4
[26] Gafiychuk, V.; Datsko, B.; Meleshko, V., Mathematical modeling of time fractional reaction-diffusion systems, J Comput Appl Math, 372, 215-225 (2008) · Zbl 1152.45008
[27] Nicolis, G.; Prigogine, I., Self-organization in non-equilibrium systems (1997), Wiley · Zbl 0363.93005
[28] Datsko, B.; Gafiychuk, V.; Luchko, Y., Bifurcation characteristics of fractional reaction-diffusion systems, AIP Conf Proc, 1493, 290-297 (2012)
[29] Vasilev, V. A.; Romanovski, Yu. M.; Yakhno, V. G., Autowave processes in distributed kinetic systems, Sov Phys Uspekhi, 22, 615-639 (1979)
[30] Kerner, B.; Osipov, V., Autosolitons (1994), Kluwer
[31] Purwins, H.-G.; Bodeker, H. U.; Amiranashvili, S., Dissipative solitons, Adv Phys, 59, 485-701 (2010)
[32] Schutz, P.; Bode, M.; Gafiichuk, V., Transition from stationary to travelling localized patterns in a two-dimensional reaction-diffusion system, Phys Rev E, 52, 4465 (1995)
[33] Caputo, M., Linear model of dissipation whose Q is almost frequency independent - II, Geophys J R Astr Soc, 13, 529-539 (1967)
[34] Caputo, M., Elasticit e dissipazione (1969), Zanichelli: Zanichelli Bologna
[35] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[36] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu, Algorithms for the fractional calculus: a selection of numerical methods, Comput Methods Appl Mech Eng, 194, 743-773 (2005) · Zbl 1119.65352
[37] Diethelm, K.; Ford, N. J.; Ford, J. M.; Weilbeer, M., Pitfalls in fast numerical solvers for fractional differential equations, J Comput Appl Math, 186, 482-503 (2006) · Zbl 1078.65550
[38] Podlubny, I.; Skovranek, T.; Datsko, B., Recent advances in numerical methods for partial fractional differential equations, (15th ICC Conf Proc 2014 (2014), IEEE), 454-457
[39] Izhikevich, E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting (2005), The MIT Press
[40] Gafiiichuk, V.; Kerner, B.; Lazurchak, I.; Osipov, V., The mechanism of ‘leading center’ in homogeneous active systems with diffusion, Mikroelektr, 20, 90-94 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.