×

Solutions of Navier-Stokes-Maxwell systems in large energy spaces. (English) Zbl 1440.35261

Summary: Large weak solutions to Navier-Stokes-Maxwell systems are not known to exist in their corresponding energy space in full generality. Here, we mainly focus on the three-dimensional setting of a classical incompressible Navier-Stokes-Maxwell system and – in an effort to build solutions in the largest possible functional spaces – prove that global solutions exist under the assumption that the initial velocity and electromagnetic fields have finite energy, and that the initial electromagnetic field is small in \(\dot{H}^s(\mathbb{R}^3)\) with \(s\in[\frac 12,\frac 32)\). We also apply our method to improve known results in two dimensions by providing uniform estimates as the speed of light tends to infinity. The method of proof relies on refined energy estimates and a Grönwall-like argument, along with a new maximal estimate on the heat flow in Besov spaces. The latter parabolic estimate allows us to bypass the use of the so-called Chemin-Lerner spaces altogether, which is crucial and could be of independent interest.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
76D05 Navier-Stokes equations for incompressible viscous fluids
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
78A25 Electromagnetic theory (general)
80A19 Diffusive and convective heat and mass transfer, heat flow
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Ars\'{e}nio, Diogo; Ibrahim, Slim; Masmoudi, Nader, A derivation of the magnetohydrodynamic system from Navier-Stokes-Maxwell systems, Arch. Ration. Mech. Anal., 216, 3, 767-812 (2015) · Zbl 1325.35135 · doi:10.1007/s00205-014-0819-9
[2] Ars\'{e}nio, Diogo; Saint-Raymond, Laure, From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. Vol. 1, EMS Monographs in Mathematics, xii+406 pp. (2019), European Mathematical Society (EMS), Z\"{u}rich · Zbl 1427.76001 · doi:10.4171/193
[3] Aubin, Jean-Pierre, Un th\'{e}or\`eme de compacit\'{e}, C. R. Acad. Sci. Paris, 256, 5042-5044 (1963) · Zbl 0195.13002
[4] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Rapha\"{e}l, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343, xvi+523 pp. (2011), Springer, Heidelberg · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[5] Bergh, J\"{o}ran; L\"{o}fstr\"{o}m, J\"{o}rgen, Interpolation spaces. An introduction, x+207 pp. (1976), Springer-Verlag, Berlin-New York · Zbl 0344.46071
[6] Biskamp, Dieter, Nonlinear magnetohydrodynamics, Cambridge Monographs on Plasma Physics 1, xiv+378 pp. (1993), Cambridge University Press, Cambridge · doi:10.1017/CBO9780511599965
[7] Chemin, J.-Y.; Lerner, N., Flot de champs de vecteurs non lipschitziens et \'{e}quations de Navier-Stokes, J. Differential Equations, 121, 2, 314-328 (1995) · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[8] Chemin, Jean-Yves; Gallagher, Isabelle, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data, Ann. Sci. \'{E}cole Norm. Sup. (4), 39, 4, 679-698 (2006) · Zbl 1124.35052 · doi:10.1016/j.ansens.2006.07.002
[9] Davidson, P. A., An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, xviii+431 pp. (2001), Cambridge University Press, Cambridge · Zbl 0974.76002 · doi:10.1017/CBO9780511626333
[10] Furioli, Giulia; Lemari\'{e}-Rieusset, Pierre G.; Terraneo, Elide, Unicit\'{e} dans \(L^3(\mathbb{R}^3)\) et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, 16, 3, 605-667 (2000) · Zbl 0970.35101 · doi:10.4171/RMI/286
[11] Germain, Pierre; Ibrahim, Slim; Masmoudi, Nader, Well-posedness of the Navier-Stokes-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 144, 1, 71-86 (2014) · Zbl 1293.35242 · doi:10.1017/S0308210512001242
[12] Grafakos, Loukas, Classical Fourier analysis, Graduate Texts in Mathematics 249, xvi+489 pp. (2008), Springer, New York · Zbl 1220.42001
[13] Ibrahim, Slim; Keraani, Sahbi, Global small solutions for the Navier-Stokes-Maxwell system, SIAM J. Math. Anal., 43, 5, 2275-2295 (2011) · Zbl 1233.35157 · doi:10.1137/100819813
[14] Lemari\'{e}-Rieusset, P. G., Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics 431, xiv+395 pp. (2002), Chapman & Hall/CRC, Boca Raton, FL · Zbl 1034.35093 · doi:10.1201/9781420035674
[15] Lemari\'{e}-Rieusset, Pierre Gilles, The Navier-Stokes problem in the 21st century, xxii+718 pp. (2016), CRC Press, Boca Raton, FL · Zbl 1342.76029 · doi:10.1201/b19556
[16] Leray, Jean, \'{E}tude de diverses \'{e}quations int\'{e}grales non lin\'{e}aires et de quelques probl\`emes que pose l’hydrodynamique, 82 pp. (1933), NUMDAM, [place of publication not identified] · Zbl 0006.16702
[17] Leray, Jean, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[18] Lions, J.-L., \'{E}quations diff\'{e}rentielles op\'{e}rationnelles et probl\`emes aux limites, Die Grundlehren der mathematischen Wissenschaften, Bd. 111, ix+292 pp. (1961), Springer-Verlag, Berlin-G\"{o}ttingen-Heidelberg · Zbl 0098.31101
[19] Lions, P.-L.; Masmoudi, N., Uniqueness of mild solutions of the Navier-Stokes system in \(L^N\), Comm. Partial Differential Equations, 26, 11-12, 2211-2226 (2001) · Zbl 1086.35077 · doi:10.1081/PDE-100107819
[20] Masmoudi, Nader, Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl. (9), 93, 6, 559-571 (2010) · Zbl 1192.35133 · doi:10.1016/j.matpur.2009.08.007
[21] Monniaux, Sylvie, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal., 195, 1, 1-11 (2002) · Zbl 1034.35095 · doi:10.1006/jfan.2002.3902
[22] Simon, Jacques, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.