×

Equivariant models of spherical varieties. (English) Zbl 1440.14232

Let \(G\) be a connected semisimple group over an algebraically closed field \(k\) of characteristic 0. Let \(Y =G/H\) be a spherical homogeneous space of \(G\). Let \(Y'\) be a spherical embedding of \(Y\). Let \(k_0\) be a subfield of \(k\). Let \(G_0\) be a \(k_0\)-model (\(k_0\)-form) of \(G\). It is shown that if \(G_0\) is an inner form of a split group, and if the subgroup \(H\) of \(G\) is spherically closed, then \(Y\) admits a \(G_0\)-equivariant \(k_0\)-model. When the assumption that \(H\) is spherically closed is replaced by the stronger assumption that \(H\) coincides with its normalizer in \(G\), it is shown that \(Y\) and \(Y'\) admit compatible \(G_0\)-equivariant \(k_0\)-models, and these models are unique. The paper is very clearly and carefully written, and discusses in detail relations to other works in the area.

MSC:

14M27 Compactifications; symmetric and spherical varieties
32M10 Homogeneous complex manifolds
14M17 Homogeneous spaces and generalizations

Software:

MathOverflow

References:

[1] D. Akhiezer, Satake diagrams and real structures on spherical varieties, Internat. J. Math. 26 (2015), no. 12, Art. ID 1550103, 13 pp. · Zbl 1348.14123
[2] Akhiezer, D.; Cupit-Foutou, S., On the canonical real structure on wonderful varieties, J. reine angew. Math., 693, 231-244 (2014) · Zbl 1314.14101
[3] Alexeev, V.; Brion, M., Moduli of affine schemes with reductive group action, J. Algebraic Geom., 14, 83-117 (2005) · Zbl 1081.14005 · doi:10.1090/S1056-3911-04-00377-7
[4] Р. Авдеев, О разрешимых сферических подгруппах полупростых алгебраических групп, Труды ММО 72 (2011), 5-62. Engl. transl.: R. Avdeev, On solvable spherical subgroups of semisimple algebraic groups, Trans. Moscow Math. Soc. 2011, 1-44. · Zbl 1256.20046
[5] Р. Авдеев, Нормализаторы разрешимых сферических подгрупп, Мат. заметки 94 (2013), no. 1, 22-35. Engl. trasl.: R. Avdeev, Normalizers of solvable spherical subgroups, Math. Notes 94 (2013), no. 1-2, 20-31. · Zbl 1285.22014
[6] Avdeev, R., Strongly solvable spherical subgroups and their combinatorial invariants, Selecta Math. (N.S.), 21, 931-993 (2015) · Zbl 1355.14034 · doi:10.1007/s00029-015-0180-3
[7] A. Borel, Linear Algebraic Groups, 2nd edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[8] Borel, A.; Serre, J-P, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv., 39, 111-164 (1964) · Zbl 0143.05901 · doi:10.1007/BF02566948
[9] Borel, A.; Tits, J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci., 27, 55-150 (1965) · Zbl 0145.17402 · doi:10.1007/BF02684375
[10] Borovoi, M., Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72, 217-239 (1993) · Zbl 0849.12011 · doi:10.1215/S0012-7094-93-07209-2
[11] M. Borovoi, G. Gagliardi, Existence of equivariant models of spherical homogeneous spaces and other G-varieties, arXiv:1810.08960 (2018). · Zbl 1509.14103
[12] M. Borovoi, B. Kunyavskiĭ, N. Lemire, Z. Reichstein, Stably Cayley groups in characteristic zero, Int. Math. Res. Not. IMRN 2014, no. 19, 5340-5397. · Zbl 1335.20050
[13] Bravi, P.; Luna, D., An introduction to wonderful varieties with many examples of type F_4, J. Algebra, 329, 4-51 (2011) · Zbl 1231.14040 · doi:10.1016/j.jalgebra.2010.01.025
[14] Brion, M.; Pauer, F., Valuations des espaces homogènes sphériques, Comment. Math. Helv., 62, 265-285 (1987) · Zbl 0627.14038 · doi:10.1007/BF02564447
[15] Cupit-Foutou, S., Anti-holomorphic involutions and spherical subgroups of reductive groups, Transform. Groups, 20, 4, 969-984 (2015) · Zbl 1354.14077 · doi:10.1007/s00031-015-9334-9
[16] Flicker, YZ; Scheiderer, C.; Sujatha, R., Grothendieck’s theorem on non-abelian H^2and local-global principles, J. Amer. Math. Soc., 11, 731-750 (1998) · Zbl 0893.14015 · doi:10.1090/S0894-0347-98-00271-9
[17] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie), Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1-255. · Zbl 0144.19904
[18] Huruguen, M., Toric varieties and spherical embeddings over an arbitrary field, J. Algebra, 342, 212-234 (2011) · Zbl 1238.14038 · doi:10.1016/j.jalgebra.2011.05.031
[19] J. Jahnel, The Brauer-Severi variety associated with a central simple algebra: a survey, https://www.math.uni-bielefeld.de/LAG/man/052.pdf.
[20] F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 225-249. · Zbl 0812.20023
[21] Knop, F., Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc., 9, 153-174 (1996) · Zbl 0862.14034 · doi:10.1090/S0894-0347-96-00179-8
[22] F. Knop (https://mathoverflow.net/users/89948/friedrich-knop), Action of N(H)/H on the colors of a spherical homogeneous space G/H, URL (version: 2017-06-09): https://mathoverflow.net/q/271795.
[23] F. Knop (https://mathoverflow.net/users/89948/friedrich-knop), Is any spherical subgroup conjugate to a subgroup defined over a smaller algebraically closed field ?, URL (version: 2017-08-01): https://mathoverflow.net/q/277708.
[24] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Vol. 6, Oxford Science Publications, Oxford University Press, Oxford, 2002. · Zbl 0996.14005
[25] Losev, IV, Uniqueness property for spherical homogeneous spaces, Duke Math. J., 147, 315-343 (2009) · Zbl 1175.14035 · doi:10.1215/00127094-2009-013
[26] D. Luna, Grosses cellules pour les variétés sphériques, in: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., Vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 267-280. · Zbl 0902.14037
[27] Luna, D., Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci., 94, 161-226 (2001) · Zbl 1085.14039 · doi:10.1007/s10240-001-8194-0
[28] J. S. Milne, Algebraic Groups. The Theory of Group Schemes of Finite Type over a Field, Cambridge Studies in Advanced Mathematics, Vol. 170, Cambridge University Press, Cambridge, 2017. · Zbl 1390.14004
[29] L. Moser-Jauslin, R. Terpereau, with an appendix by M. Borovoi, Real structures on horospherical varieties, arXiv:1808.10793 (2018). · Zbl 1502.14120
[30] Perrin, N., On the geometry of spherical varieties, Transform. Groups, 19, 1, 171-223 (2014) · Zbl 1309.14001 · doi:10.1007/s00031-014-9254-0
[31] V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123-278. · Zbl 0789.14008
[32] Serre, J-P, Galois Cohomology (1997), Berlin: Springer-Verlag, Berlin · Zbl 0902.12004
[33] T. A. Springer, Reductive groups, in: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., Vol. 33, Part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 3-27. · Zbl 0416.20034
[34] T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Math., Vol. 9, Birkhäuser, Boston, MA, 1998. · Zbl 0927.20024
[35] D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encyclopaedia of Mathematical Sciences, Vol. 138, Subseries Invariant Theory and Algebraic Transformation Groups, Vol. VIII, Berlin, Springer-Verlag, 2011. · Zbl 1237.14057
[36] J. Tits, Classification of algebraic semisimple groups, in: Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Vol. 9, Boulder, Colo., 1965, Amer. Math. Soc., Providence, RI, 1966, pp. 33-62. · Zbl 0238.20052
[37] Wedhorn, T., Spherical spaces, Ann. Inst. Fourier (Grenoble), 68, 229-256 (2018) · Zbl 1470.14107 · doi:10.5802/aif.3159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.