×

Sequences of powers with second differences equal to two and hyperbolicity. (English) Zbl 1440.11110

Summary: By explicitly finding the complete set of curves of genus 0 or 1 in some surfaces of general type, we prove that under the Bombieri-Lang conjecture for surfaces, there exists an absolute bound \(M>0\) such that there are only finitely many sequences of length \( M\) formed by \(k\)-th rational powers with second differences equal to 2. Moreover, we prove the unconditional analogue of this result for function fields, with \(M\) depending only on the genus of the function field. We also find new examples of Brody-hyperbolic surfaces arising from the previous arithmetic problem. Finally, under the Bombieri-Lang conjecture and the ABC-conjecture for four terms, we prove analogous results for sequences of integer powers with possibly different exponents, in which case some exceptional sequences occur.

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11D41 Higher degree equations; Fermat’s equation
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
14G05 Rational points
Full Text: DOI

References:

[1] An, Ta Thi Hoai; Huang, Hsiu-Lien; Wang, Julie Tzu-Yueh, Generalized B\`“uchi”s problem for algebraic functions and meromorphic functions, Math. Z., 273, 1-2, 95-122 (2013) · Zbl 1347.11033 · doi:10.1007/s00209-012-0997-9
[2] Bogomolov, F. A., The theory of invariants and its applications to some problems in the algebraic geometry. Algebraic surfaces, C.I.M.E. Summer Sch. 76, 217-245 (2010), Springer, Heidelberg · doi:10.1007/978-3-642-11087-0\_4
[3] Browkin, J.; Brzezi\'nski, J., Some remarks on the \(abc\)-conjecture, Math. Comp., 62, 206, 931-939 (1994) · Zbl 0804.11006 · doi:10.2307/2153551
[4] Deschamps, Mireille, Courbes de genre g\'eom\'etrique born\'e sur une surface de type g\'en\'eral [d’apr\`“es F. A. Bogomolov]. S\'”eminaire Bourbaki, 30e ann\'ee (1977/78), Lecture Notes in Math. 710 (1979, Exp. No. 519, pp. 233-247), Springer, Berlin · Zbl 0412.14013
[5] Eisenbud, David; Harris, Joe, The geometry of schemes, Graduate Texts in Mathematics 197, x+294 pp. (2000), Springer-Verlag, New York · Zbl 0960.14002
[6] Garcia-Fritz, Natalia, Representation of powers by polynomials and the language of powers, J. Lond. Math. Soc. (2), 87, 2, 347-364 (2013) · Zbl 1319.11093 · doi:10.1112/jlms/jds052
[7] Fritz, Natalia Cristina Garcia, Curves of low genus on surfaces and applications to Diophantine problems, 274 pp., ProQuest LLC, Ann Arbor, MI
[8] Grothendieck, A.; Dieudonn\'e, J. A., El\'ements de g\'eom\'etrie alg\'ebrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 166, ix+466 pp. (1971), Springer-Verlag, Berlin · Zbl 0203.23301
[9] Hartshorne, Robin, Algebraic geometry. Graduate Texts in Mathematics, No. 52 (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[10] Lang, Serge, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.), 14, 2, 159-205 (1986) · Zbl 0602.14019 · doi:10.1090/S0273-0979-1986-15426-1
[11] Lang, Serge, Number theory. III. Diophantine geometry, Encyclopaedia of Mathematical Sciences, vol. 60 (1991), Springer-Verlag, Berlin · Zbl 0744.14012
[12] L. Lipshitz, Quadratic forms, the five square problem, and diophantine equations, The Collected Works of J. Richard B\"uchi (S. MacLane and Dirk Siefkes, eds.), Springer, 1990, pp. 677-680..
[13] Mazur, B., Questions of decidability and undecidability in number theory, J. Symbolic Logic, 59, 2, 353-371 (1994) · Zbl 0814.11059 · doi:10.2307/2275395
[14] McQuillan, Michael, Diophantine approximations and foliations, Inst. Hautes \'Etudes Sci. Publ. Math., 87, 121-174 (1998) · Zbl 1006.32020
[15] Mumford, David, Lectures on curves on an algebraic surface, with a section by G. M. Bergman, Annals of Mathematics Studies, No. 59, xi+200 pp. (1966), Princeton University Press, Princeton, N.J. · Zbl 1079.14002
[16] Noguchi, Junjiro, A higher-dimensional analogue of Mordell’s conjecture over function fields, Math. Ann., 258, 2, 207-212 (1981/82) · Zbl 0459.14002 · doi:10.1007/BF01450536
[17] Pasten, H.; Pheidas, T.; Vidaux, X., A survey on B\`“uchi”s problem: new presentations and open problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). J. Math. Sci. (N.Y.), 377 171, 6, 765-781 (2010) · Zbl 1282.11015 · doi:10.1007/s10958-010-0181-x
[18] Pasten, Hector, Powerful values of polynomials and a conjecture of Vojta, J. Number Theory, 133, 9, 2964-2998 (2013) · Zbl 1364.11090 · doi:10.1016/j.jnt.2013.03.001
[19] Pheidas, Thanases; Vidaux, Xavier, Extensions of B\`“uchi”s problem: questions of decidability for addition and \(k\) th powers, Fund. Math., 185, 2, 171-194 (2005) · Zbl 1079.03005 · doi:10.4064/fm185-2-4
[20] Pheidas, Thanases; Vidaux, Xavier, The analogue of B\`“uchi”s problem for rational functions, J. London Math. Soc. (2), 74, 3, 545-565 (2006) · Zbl 1109.03032 · doi:10.1112/S0024610706023283
[21] Pheidas, Thanases; Vidaux, Xavier, Corrigendum: The analogue of B\`“uchi”s problem for rational functions [MR2286432], J. Lond. Math. Soc. (2), 82, 1, 273-278 (2010) · Zbl 1109.03032 · doi:10.1112/jlms/jdq002
[22] Vojta, Paul, A more general \(abc\) conjecture, Internat. Math. Res. Notices, 21, 1103-1116 (1998) · Zbl 0923.11059 · doi:10.1155/S1073792898000658
[23] Vojta, Paul, Diagonal quadratic forms and Hilbert’s tenth problem. Hilbert’s tenth problem: relations with arithmetic and algebraic geometry, Ghent, 1999, Contemp. Math. 270, 261-274 (2000), Amer. Math. Soc., Providence, RI · Zbl 0995.11070 · doi:10.1090/conm/270/04378
[24] Vojta, Paul, On the \(ABC\) conjecture and Diophantine approximation by rational points, Amer. J. Math., 122, 4, 843-872 (2000) · Zbl 1037.11052
[25] Vojta, Paul, Diophantine approximation and Nevanlinna theory. Arithmetic geometry, Lecture Notes in Math. 2009, 111-224 (2011), Springer, Berlin · Zbl 1258.11076 · doi:10.1007/978-3-642-15945-9\_3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.