×

Globally optimal departure rates for several groups of drivers. (English) Zbl 1439.90023

Summary: The first part of this paper contains a brief introduction to conservation law models of traffic flow on a network of roads. Globally optimal solutions and Nash equilibrium solutions are reviewed, with several groups of drivers sharing different cost functions. In the second part we consider a globally optimal set of departure rates, for different groups of drivers but on a single road. Necessary conditions are proved, which lead to a practical algorithm for computing the optimal solution.

MSC:

90B20 Traffic problems in operations research
90B10 Deterministic network models in operations research
91A10 Noncooperative games
90C26 Nonconvex programming, global optimization

References:

[1] Bellomo N.; Delitala M.; Coscia V., On the mathematical theory of vehicular traffic flow I: Fluid dynamic and kinetic modeling, Math Models Methods Appl Sci, 12, 1801-1843 (2002) · Zbl 1041.76061 · doi:10.1142/S0218202502002343
[2] Bellomo N.; Dogbe C., On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev, 53, 409-463 (2011) · Zbl 1231.90123 · doi:10.1137/090746677
[3] Bressan A., Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem, Oxford University Press. (2000) · Zbl 0997.35002
[4] Bressan A.; Canic S.; Garavello M.; et al., Flow on networks: Recent results and perspectives, EMS Surv Math Sci, 1, 47-111 (2014) · Zbl 1301.35193 · doi:10.4171/EMSS/2
[5] Bressan A.; Han K., Optima and equilibria for a model of traffic flow, SIAM J Math Anal, 43, 2384-2417 (2011) · Zbl 1236.90024 · doi:10.1137/110825145
[6] Bressan A.; Han K., Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM Control Optim Calc Var, 18, 969-986 (2012) · Zbl 1262.35199 · doi:10.1051/cocv/2011198
[7] Bressan A.; Liu CJ; Shen W.; et al., Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl Math, 70, 495-515 (2012) · Zbl 1250.35173 · doi:10.1090/S0033-569X-2012-01304-9
[8] Bressan A.; Marson A., A variational calculus for discontinuous solutions of conservative systems, Commun Part Diff Eq, 20, 1491-1552 (1995) · Zbl 0846.35080 · doi:10.1080/03605309508821142
[9] Bressan A.; Marson A., A maximum principle for optimally controlled systems of conservation laws, Rend Sem Mat Univ Padova, 94, 79-94 (1995) · Zbl 0935.49012
[10] Bressan A.; Nguyen K., Conservation law models for traffic flow on a network of roads, Netw Heter Media, 10, 255-293 (2015) · Zbl 1335.49035 · doi:10.3934/nhm.2015.10.255
[11] Bressan A.; Nguyen K., Optima and equilibria for traffic flow on networks with backward propagating queues, Netw Heter Media, 10, 717-748 (2015) · Zbl 1326.49063 · doi:10.3934/nhm.2015.10.717
[12] Bressan A.; Nordli A., The Riemann Solver for traffic flow at an intersection with buffer of vanishing size, Netw Heter Media, 12, 173-189 (2017) · Zbl 1365.90093 · doi:10.3934/nhm.2017007
[13] Bressan A.; Shen W., Optimality conditions for solutions to hyperbolic balance laws, In: Ancona, F, , Lasieka, I., Littman, W., et al. Editors. Control Methods in PDE - Dynamical Systems, AMS Contemporary Mathematics, 426, 129-152 (2007) · Zbl 1354.49002 · doi:10.1090/conm/426/08187
[14] Bressan A.; Yu F., Continuous Riemann solvers for traffic flow at a junction, Discr Cont Dyn Syst, 35, 4149-4171 (2015) · Zbl 1332.35371 · doi:10.3934/dcds.2015.35.4149
[15] Chitour Y.; Piccoli B., Traffic circles and timing of traffic lights for cars flow, Discrete Contin Dyn Syst B, 5, 599-630 (2005) · Zbl 1086.35066 · doi:10.3934/dcdsb.2005.5.599
[16] Coclite GM; Garavello M.; Piccoli B., Traffic flow on a road network, SIAM J Math Anal, 36, 1862-1886 (2005) · Zbl 1114.90010 · doi:10.1137/S0036141004402683
[17] Dafermos C., Polygonal approximations of solutions of the initial value problem for a conservation law, J Math Anal Appl, 38, 33-41 (1972) · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[18] Daganzo C., Fundamentals of Transportation and Traffic Operations, Oxford, UK: Pergamon-Elsevier. (1997)
[19] Evans LC, Partial Differential Equations, 2 Eds., Providence, RI: American Mathematical Society. (2010) · Zbl 1194.35001
[20] Garavello M.; Han K.; Piccoli B., Models for Vehicular Traffic on Networks, Missouri: AIMS Series on Applied Mathematics, Springfield. (2016) · Zbl 1351.90045
[21] Garavello M.; Piccoli B., Traffic Flow on Networks, Conservation Laws Models. Missouri: AIMS Series on Applied Mathematics, Springfield. (2006) · Zbl 1136.90012
[22] Garavello M.; Piccoli B., Traffic flow on complex networks, Ann Inst H Poincaré Anal Nonlinear, 26, 1925-1951 (2009) · Zbl 1181.35144 · doi:10.1016/j.anihpc.2009.04.001
[23] Herty M.; Moutari S.; Rascle M., Optimization criteria for modeling intersections of vehicular traffic flow, Netw Heterog Media, 1, 275-294 (2006) · Zbl 1131.90016 · doi:10.3934/nhm.2006.1.275
[24] Holden H.; Risebro NH, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J Math Anal, 26, 999-1017 (1995) · Zbl 0833.35089 · doi:10.1137/S0036141093243289
[25] Lax PD, Hyperbolic systems of conservation laws, Comm Pure Appl Math, 10, 537-556 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[26] Lighthill M.; Whitham G., On kinematic waves, II. A theory of traffic flow on long crowded roads. P Roy Soc A Math Phys Eng Sci, 229, 317-345 (1955) · Zbl 0064.20906
[27] Pfaff S.; Ulbrich S., Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data, SIAM J Control Optim, 53, 1250-1277 (2015) · Zbl 1318.49043 · doi:10.1137/140995799
[28] Richards PI, Shock waves on the highway, Oper Res, 4, 42-51 (1956) · Zbl 1414.90094 · doi:10.1287/opre.4.1.42
[29] Smoller J., Shock Waves and Reaction-Diffusion Equations, 2 Eds., New York: Springer-Verlag. (1994) · Zbl 0807.35002
[30] Ulbrich S., A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms, SIAM J Control Optim, 41, 740-797 (2002) · Zbl 1019.49026 · doi:10.1137/S0363012900370764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.