×

Split quaternion-valued twin-multistate Hopfield neural networks. (English) Zbl 1439.82035

Complex-valued Hopfield neural networks with a multistate activation function can be designed to process multi-level data for different kind of applications. In the present article the author concentrates on a special architecture, the so-called split quaternion-valued Hopfield neural networks with a T-multistate activation function which is understood as a pair of complex-valued multistate activation functions. The goal is to evaluate the performance of the network by means of simulations. There is a discussion on the obtained results.

MSC:

82C32 Neural nets applied to problems in time-dependent statistical mechanics
68T05 Learning and adaptive systems in artificial intelligence

Software:

CIFAR
Full Text: DOI

References:

[1] Antonuccio, F., Split-quaternions and the Dirac equation, Adv. Appl. Clifford Algebras, 25, 1, 13-29 (2015) · Zbl 1325.35184 · doi:10.1007/s00006-014-0475-z
[2] Arena, P.; Fortuna, L.; Muscato, G.; Xibilia, MG, Multilayer perceptrons to approximate quaternion valued functions, Neural Netw., 10, 2, 335-342 (1997) · doi:10.1016/S0893-6080(96)00048-2
[3] Catoni, F.; Cannata, R.; Catoni, V.; Zampetti, P., N-dimensional geometries generated by hypercomplex numbers, Adv. Appl. Clifford Algebras, 15, 1, 1-25 (2005) · Zbl 1114.53003 · doi:10.1007/s00006-005-0001-4
[4] Ghadami, F.; Rahebi, J.; Yayli, Y., Spline split quaternion interpolation in Minkowski space, Adv. Appl. Clifford Algebras, 23, 4, 849-862 (2013) · Zbl 1287.53015 · doi:10.1007/s00006-013-0410-8
[5] Hitzer, E.; Nitta, T.; Kuroe, Y., Applications of Clifford’s geometric algebra, Adv. Appl. Clifford Algebras, 23, 2, 377-404 (2013) · Zbl 1269.15022 · doi:10.1007/s00006-013-0378-4
[6] Isokawa, T., Nishimura, H., Matsui, N.: Commutative quaternion and multistate Hopfield neural networks. Proceedings of IEEE World Congress on Computational Intelligence 1281-1286 (2010). 10.1109/IJCNN.2010.5596736
[7] Isokawa, T., Nishimura, H., Saitoh, A., Kamiura, N., Matsui, N.: On the scheme of quaternionic multistate Hopfield neural network. Proceedings of Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent Systems 5, 809-813 (2008). 10.14864/softscis.2008.0.809.0
[8] Isokawa, T.; Nishimura, H.; Kamiura, N.; Matsui, N., Associative memory in quaternionic Hopfield neural network, Int. J. Neural Syst., 18, 2, 135-145 (2008) · doi:10.1142/S0129065708001440
[9] Kim, H.; Hirose, A., Unsupervised fine land classification using quaternion autoencoder-based polarization feature extraction and self-organizing mapping, IEEE Trans. Geosci. Remote Sens., 56, 3, 1839-1851 (2017) · doi:10.1109/TGRS.2017.2768619
[10] Kobayashi, M., Symmetric quaternionic Hopfield neural networks, Neurocomputing, 240, 110-114 (2017) · doi:10.1016/j.neucom.2017.02.044
[11] Kobayashi, M., Three-dimensional quaternionic Hopfield neural networks, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E100-A, 7, 1575-1577 (2017) · doi:10.1587/transfun.E100.A.1575
[12] Kobayashi, M., Quaternionic Hopfield neural networks with twin-multistate activation function, Neurocomputing, 267, 304-310 (2017) · doi:10.1016/j.neucom.2017.06.013
[13] Kobayashi, M., Twin-multistate commutative quaternion Hopfield neural networks, Neurocomputing, 320, 150-156 (2018) · doi:10.1016/j.neucom.2018.09.023
[14] Kobayashi, M., Hyperbolic Hopfield neural networks with directional multistate activation function, Neurocomputing, 275, 2217-2226 (2018) · doi:10.1016/j.neucom.2017.10.053
[15] Kobayashi, M., Noise robust projection rule for hyperbolic Hopfield neural networks, IEEE Trans. Neural Netw. Learn. Syst., 31, 1, 352-356 (2020) · doi:10.1109/TNNLS.2019.2899914
[16] Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report. University of Toronto (2009)
[17] Minemoto, T., Isokawa, T., Kobayashi, M., Nishimura, H., Matsui, N.: Pattern retrieval by quaternionic associative memory with dual connections. International Conference on Neural Information Processing 317-325 (2016). 10.1007/978-3-319-46675-0_35
[18] Minemoto, T.; Isokawa, T.; Nishimura, H.; Matsui, N., Quaternionic multistate Hopfield neural network with extended projection rule, Artif. Life Robot., 21, 1, 106-111 (2016) · doi:10.1007/s10015-015-0247-4
[19] Muezzinoglu, MK; Guzelis, C.; Zurada, JM, A new design method for the complex-valued multistate Hopfield associative memory, IEEE Trans. Neural Netw., 14, 4, 891-899 (2003) · doi:10.1109/TNN.2003.813844
[20] Parcollet, T., Morchid, M., Linares, G.: Deep quaternion neural networks for spoken language understanding. IEEE Automatic Speech Recognition and Understanding Workshop. 504-511 (2017). 10.1109/ASRU.2017.8268978
[21] Valle, M.E.: A novel continuous-valued quaternionic Hopfield neural network. Proceedings of Brazilian Conference on Intelligent Systems 97-102 (2014). 10.1109/BRACIS.2014.28
[22] Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. Proceedings of the European Conference on Computer Vision. 631-647 (2018). 10.1007/978-3-030-01237-3_39
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.