×

Bayesian identification of the tendon fascicle’s structural composition using finite element models for helical geometries. (English) Zbl 1439.74201

Summary: Despite extensive experimental and computational investigations, the accurate determination of the structural composition of biological tendons remains elusive. Here we infer the structural compositions of tendons by coupling a finite element model with fascicle experimental data through a Bayesian uncertainty quantification framework. We present a mechanical model of the fascicle’s geometric and material properties based on its constituents and employ the Bayesian framework to infer its parameters. The finite element model is optimized for helical geometries to reduce the computational cost associated with the Bayesian inference. We establish a link between the fiber and the fascicle tendon scale and identify an appropriate range of mechanically compatible material and geometric properties to quantify the tendon properties. These findings could serve as a basis for the design of artificial tendons.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
62F15 Bayesian inference
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
92C30 Physiology (general)

Software:

CMA-ES; BayesDA
Full Text: DOI

References:

[1] Shen, Z. L., Tensile mechanical properties of isolated collagen fibrils obtained by micro electrochemical systems technology (2010), Case Western reserve university, (Ph.D. thesis)
[2] Thorpe, C. T.; Klemt, C.; Riley, G. P.; Birch, H. L.; Clegg, P. D.; Screen, H. R.C., Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return, Acta biomaterialia, 9, 8, 7948-7956 (2013)
[3] Thorpe, C. T.; Riley, G. P.; Birch, H. L.; Clegg, P. D.; Screen, H. R.C., Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading, J. R. Soc. Interface, 11, 20131058 (2014)
[4] Goh, K. L.; Holmes, D. F.; Lu, H.-Y.; Richardson, S.; Kadler, K. E.; Purslow, P. P.; Wess, T. J., Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction, J. Biomech. Eng., 130, 2, Article 021011 pp. (2008)
[5] Zhang, Z. J.; Ng, G. Y.-f.; Lee, W. C.; Fu, S. N., Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability, PLoS ONE, 9, 10, Article e108337 pp. (2014)
[6] Robinson, P.; Lin, T.; Jawad, A.; Iozzo, R.; Soslowsky, L., Investigating tendon fascicle structure-function relationships in a transgenic-age mouse model using multiple regression models, Ann. Biomed. Eng., 32, 7, 924-931 (2004)
[7] Laurent, C. P.; Latil, P.; Durville, D.; Rahouadj, R.; Geindreau, C.; Orgéas, L.; Ganghoffer, J.-F., Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: Finite elements analysis vs. X-ray tomography imaging, J. Mech. Beh. Biomed. Mat., 40, 222-233 (2014)
[8] Meimandi-Parizi, A.; Oryan, A.; Moshiri, A., Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study, PLoS ONE, 8, 9 (2013)
[9] Orgel, J. P. R. O.; Irving, T. C.; Miller, A.; Wess, T. J., Microfibrillar structure of type I collagen in situ, Proc. Natl. Acad. Sci., 103, 24, 9001-9005 (2006)
[10] Yahia, L. H.; Drouin, G., Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture, J. Orth. Res., 7, 2, 243-251 (1989)
[11] de Campos Vidal, B., Image analysis of tendon helical superstructure using interference and polarized light microscopy, Micron (Oxford, England: 1993), 34, 8, 423-432 (2003)
[12] Järvinen, T.a. H.; Järvinen, T. L.N.; Kannus, P.; Józsa, L.; Järvinen, M., Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle, J. Orthop. Res., 22, 6, 1303-1309 (2004)
[13] Shen, Z. L.; Kahn, H.; Ballarini, R.; Eppell, S. J., Viscoelastic properties of isolated collagen fibrils, Biophys. J., 100, 12, 3008-3015 (2011)
[14] Svensson, R. B.; Hassenkam, T.; Grant, C.a.; Magnusson, S. P., Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts, Biophys. J., 99, 12, 4020-4027 (2010)
[15] Kato, Y. P.; Christiansen, D. L.; Hahn, R.a.; Shieh, S. J.; Goldstein, J. D.; Silver, F. H., Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres, Biomaterials, 10, 1, 38-42 (1989)
[16] Gentleman, E.; Lay, A. N.; Dickerson, D. A.; Nauman, E. A.; Livesay, G. A.; Dee, K. C., Mechanical characterization of collagen fibers and scaffolds for tissue engineering, Biomaterials, 24, 3805-3813 (2003)
[17] Haraldsson, B. T.; Aagaard, P.; Crafoord-Larsen, D.; Kjaer, M.; Magnusson, S. P., Corticosteroid administration alters the mechanical properties of isolated collagen fascicles in rat-tail tendon, Scand. J. Med. Sci. Sports, 19, 621-626 (2009)
[18] Derwin, K. A.; Soslowsky, L. J., A quantitative investigation of structure-function relationships in a tendon fascicle model, J. Biomech. Eng., 121, December 1999, 598-604 (1999)
[19] Kjaer, M., Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading, Phys. Rev., 84, 2, 649-698 (2004)
[20] Ault, H. K.; Hoffman, A. H., A composite micromechanical model for connective tissues: Part II—Application to rat tail tendon and joint capsule, J. Biomech. Eng., 114, 1, 142-146 (1992)
[21] Lynch, H. A., Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon, J. Biomech. Eng., 125, 5, 726 (2003)
[22] Cheng, V. W.T.; Screen, H. R.C., The micro-structural strain response of tendon, J. Mater. Sci., 42, 21, 8957-8965 (2007)
[23] Reese, S. P.; Maas, S.a.; Weiss, J.a., Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios, J. Biomech., 43, 7, 1394-1400 (2010)
[24] Swedberg, A. M.; Reese, S. P.; Maas, S.a.; Ellis, B. J.; Weiss, J.a., Continuum description of the Poisson’s ratio of ligament and tendon under finite deformation, J. Biomech., 47, 12, 3201-3209 (2014)
[25] Svensson, R. B.; Hansen, P.; Hassenkam, T.; Haraldsson, B. T.; Aagaard, P.; Kovanen, V.; Krogsgaard, M.; Kjaer, M.; Magnusson, S. P., Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril, J. Appl. Physiol., 112, 3, 419-426 (2012)
[26] Hansen, P.; Haraldsson, B. T.; Aagaard, P.; Kovanen, V.; Avery, N. C.; Qvortrup, K.; Larsen, J. O.; Krogsgaard, M.; Kjaer, M.; Peter Magnusson, S., Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology, J. Appl. Physiol., 108, 47-52 (2010)
[27] Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P., Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B, 117, 47, 14808-14816 (2013)
[28] Beck, J. L.; Katafygiotis, L. S., Updating models and their uncertainties. I: Bayesian statistical framework, J. Eng. Mech.-ASCE, 124, 4, 455-461 (1998)
[29] Taflanidis, A.; Beck, J. L., Prior and posterior robust stochastic predictions for dynamical systems using probability logic, Int. J. Unc. Qu., 3, 4, 271-288 (2013) · Zbl 1513.37048
[30] Farrell, K.; Oden, J. T.; Faghihi, D., A bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems, J. Comput. Phys., 295, 0, 189-208 (2015) · Zbl 1349.62078
[31] Hadjidoukas, P. E.; Angelikopoulos, P.; Rossinelli, D.; Alexeev, D.; Papadimitriou, C.; Koumoutsakos, P., Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials, Comput. Methods Appl. Mech. Engrg., 282, 218-238 (2014) · Zbl 1423.74956
[32] Papadopoulos, V.; Giovanis, D. G.; Lagaros, N. D.; Papadrakakis, M., Accelerated subset simulation with neural networks for reliability analysis, Comput. Methods Appl. Mech. Engrg., 223-224, 70-80 (2012) · Zbl 1253.74073
[33] Stavroulakis, G.; Giovanis, D. G.; Papadrakakis, M.; Papadopoulos, V., A new perspective on the solution of uncertainty quantification and reliability analysis of large-scale problems, Comput. Methods Appl. Mech. Engrg., 276, 627-658 (2014) · Zbl 1425.65012
[34] An, K.-N.; Sun, Y.-L.; Luo, Z.-P., Flexibility of type I collagen and mechanical property of connective tissue, Biorheology, 41, 3-4, 239-246 (2004)
[35] Karathanasopoulos, N.; Kress, G., Two dimensional modeling of helical structures, an application to simple strands, Comput. Struct. (2015)
[36] Jeffreys, H., Theory of Probability (1961), Oxford University Press, USA · Zbl 0116.34904
[37] Simoen, E.; Papadimitriou, C.; Lombaert, G., On prediction error correlation in bayesian model updating, J. Sound Vib., 332, 18, 4136-4152 (2013)
[38] Murphy, K. P., Conjugate Bayesian Analysis of the Gaussian Distribution Tech. Rep. (2007), University of British Columbia
[39] Yuen, K.-V., Bayesian Methods for Structural Dynamics and Civil Engineering (2010), Wiley-Vch Verlag
[40] Beck, J. L., Bayesian system identification based on probability logic, Struct. Control Health Monit., 17, 7, 825-847 (2010)
[41] Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P., Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys., 137, 14, Article 144103 pp. (2012)
[42] Cheung, S. H.; Oliver, T. A.; Prudencio, E. E.; Prudhomme, S.; Moser, R. D., Bayesian uncertainty analysis with applications to turbulence modeling, Reliab. Eng. Syst. Saf., 96, 9, 1137-1149 (2011)
[43] Skilling, J., Nested sampling for general Bayesian computation, Bayesian Anal., 1, 4, 833-859 (2006) · Zbl 1332.62374
[44] Künsch, H. R., Particle filters, Bernoulli, 19, 4, 1391-1403 (2013) · Zbl 1275.93058
[45] Thomson, J. J., On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure, Philosoph. Mag. Ser., 7, 39, 237-265 (1904) · JFM 35.0790.01
[46] Cohn, H.; Kumar, A., Universally optimal distribution of points on spheres, J. Amer. Math. Soc., 20, 1, 99-148 (2007) · Zbl 1198.52009
[47] Hansen, N.; Muller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es), Evol. Comput., 11, 1, 1-18 (2003)
[48] Lavagnino, M.; Arnoczky, S. P.S. P.; Frank, K.; Tian, T., Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons, J. Biomech., 38, 1, 69-75 (2005)
[49] Gelman, A.; Carlin, J.; Stern, H.; Dunson, D.; Vehtari, A.; Rubin, D., (Bayesian Data Analysis. Bayesian Data Analysis, Chapman & Hall/CRC Texts in Statistical Science (2013), Taylor & Francis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.