×

Inverse dynamics-based motion control of a fluid-actuated rolling robot. (English) Zbl 1439.70015

Summary: In this paper, the rest-to-rest motion planning problem of a fluid-actuated spherical robot is studied. The robot is driven by moving a spherical mass within a circular fluid-filled pipe fixed internally to the spherical shell. A mathematical model of the robot is established and two inverse dynamics-based feed-forward control methods are proposed. They parameterize the motion of the outer shell or the internal moving mass as weighted beta functions. The feasibility of the proposed feed-forward control schemes is verified under simulations.

MSC:

70E60 Robot dynamics and control of rigid bodies

References:

[1] Armour, Rh. H. and Vincent, J. F., “Rolling in Nature and Robotics: A Review”, J. Bionic Eng., 3:4 (2006), 195-208 · doi:10.1016/S1672-6529(07)60003-1
[2] Halme, A., Schonberg, T., and Wang, Y., “Motion Control of a Spherical Mobile Robot”, Proc. of the 4th Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996), v. 1, 259-264
[3] Bicchi, A., Balluchi, A., Prattichizzo, D., and Gorelli, A., “Introducing the “SPHERICLE”: An Experimental Testbed for Research and Teaching in Nonholonomy”, Proc. of the IEEE Internat. Conf. on Robotics and Automation, The IEEE Internat. Conf. on Robotics and Automation (Albuquerque, N.M., USA, 1997), v. 3, 2620-2625
[4] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134-152 · Zbl 1317.93192 · doi:10.1134/S1560354715020033
[5] Chowdhury, A. R., Soh, G. S., Foong, S., and Wood, K. L., “Implementation of Caterpillar Inspired Rolling Gait and Nonlinear Control Strategy in a Spherical Robot”, J. Bionic Eng., 15:2 (2018), 313-328 · doi:10.1007/s42235-018-0024-x
[6] Javadi, A. H. and Mojabi, P., “Introducing August: A Novel Strategy for an Omnidirectional Spherical Rolling Robot”, Proc. of the 2002 IEEE Internat. Conf. on Robotics & Automation, The 2002 IEEE Internat. Conf. on Robotics & Automation (Washington, D.C., May 2002), v. 4, 3527-3533
[7] Behar, A., Matthews, J., Carsey, F., and Jones, J., “NASA/JPL Tumbleweed Polar Rover”, Proc. of the 2004 IEEE Aerospace Conf., The 2004 IEEE Aerospace Conf. (Big Sky, Mont., March 2004), v. 1, 395-407
[8] Liu, D., Sun, H., and Jia, Q., “Stabilization and Path Following of a Spherical Robot”, Proc. of the IEEE Conf. on Robotics, Automation and Mechatronics, The IEEE Conf. on Robotics, Automation and Mechatronics (Chengdu, China, Sept 2008), 676-682 · Zbl 0746.93032
[9] Mahboubi, S., Seyyed Fakhrabadi, M. M., and Ghanbari, A., “Design and Implementation of a Novel Spherical Mobile Robot”, J. Intell. Robot. Syst., 71:1 (2013), 43-64 · doi:10.1007/s10846-012-9748-8
[10] Tafrishi, S. A., “RollRoller” Novel Spherical Mobile Robot Basic Dynamical Analysis and Motion Simulations, Master’s Dissertation, Univ. of Sheffield, Sheffield, 2014, 81 pp.
[11] Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, ASME J. Mech. Robot., 11:4 (2019), 041010, 10 pp. · Zbl 1439.70015 · doi:10.1115/1.4043689
[12] Kayacan, E., Kayacan, E., Ramon, H., and Saeys, W., “Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm”, IEEE Trans. Cybern., 43:1 (2013), 170-179 · doi:10.1109/TSMCB.2012.2202900
[13] Svinin, M., Bai, Y., and Yamamoto, M., “Dynamic Model and Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), The 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656-661 · Zbl 1411.70021
[14] Brown, H. B. Jr. and Xu, Y., “A Single-Wheel, Gyroscopically Stabilized Robot”, IEEE Internat. Conf. on Robotics and Automation (Minneapolis, Minn., 1996), v. 4, 3658-3663
[15] Bhattacharya, S. and Agrawal, S. K., “Spherical Rolling Robot: A Design and Motion Planning Studies”, IEEE Trans. Robot. Autom., 16:6 (2000), 835-839 · doi:10.1109/70.897794
[16] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin’s Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3-4 (2012), 258-272 · Zbl 1264.37016 · doi:10.1134/S1560354712030045
[17] Morinaga, A., Svinin, M., and Yamamoto, M., “A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993-1002 · doi:10.1109/TRO.2014.2307112
[18] Schroll, G. C., Design of a Spherical Vehicle with Flywheel Momentum Storage for High Torque Capabilities, Thesis for Bachelor Degree, MIT, Cambridge, Mass., 2008, 26 pp.
[19] Tafrishi, S. A., Esmaeilzadeh, E., Svinin, M., and Yamamoto, M., “A Fluid-Actuated Driving Mechanism for Rolling Robots”, Proc. of the IEEE 4th Internat. Conf. on Advanced Robotics and Mechatronics, The IEEE 4th Internat. Conf. on Advanced Robotics and Mechatronics (ICARM, Toyonaka, Japan, July 2019), 256-261
[20] Street, R. L., Watters, G.Ż., and Vennard, J. K., Elementary Fluid Mechanics, 7th ed., Wiley, New York, 1995, 784 pp.
[21] Childs, P. R., Mechanical Design, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 384 pp.
[22] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716-728 · Zbl 1339.93081 · doi:10.1134/S1560354715060076
[23] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2013, no. 4, 150-163 (Russian) · Zbl 1308.93147 · doi:10.1134/S1064230713040047
[24] Bai, Y., Svinin, M., and Yamamoto, M., “Motion Planning for a Hoop-Pendulum Type of Underactuated Systems”, Proc. of the IEEE Internat. Conf. on Robotics and Automation, The IEEE Internat. Conf. on Robotics and Automation (ICRA, Stockholm, May 2016), 2739-2744
[25] Bai, Y., Svinin, M., and Yamamoto, M., “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372-388 · Zbl 1411.70021 · doi:10.1134/S1560354718040020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.