×

Identification and quantification of multivariate interval uncertainty in finite element models. (English) Zbl 1439.65162

Summary: The objective of this work is to develop and validate a methodology for the identification and quantification of multivariate interval uncertainty in finite element models. The principal idea is to find a solution to an inverse problem, where the variability on the output side of the model is known from measurement data, but the multivariate uncertainty on the input parameters is unknown. For this purpose, the uncertain simulation results set created by propagating interval uncertainty through the model is represented by its convex hull. The same concept is used to model the uncertainty in the measurements. A metric to describe the discrepancy between these convex hulls is defined based on the difference between their volumes and their mutual intersection. By minimisation of this metric, the interval uncertainty on the input side of the model is identified. It is further shown how the procedure can be optimised with respect to output quantity selection. Validation of the methodology is done using simulated measurement data in two case studies. Numerically exact identification of multiple, coupled parameters having interval uncertainty is possible following the proposed methodology. Furthermore, the robustness of the method with respect to the analyst’s initial estimate of the input uncertainty is illustrated. The method presented in this work in se is generic, but for the examples in this paper, it is specifically applied to dynamic models, using eigenfrequencies as output quantities, as commonly applied in modal updating procedures.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65G40 General methods in interval analysis

Software:

Qhull

References:

[1] Moens, D.; Vandepitte, D., Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis, Arch. Comput. Methods Eng., 13, 3, 389-464 (2006) · Zbl 1105.74043
[2] Stefanou, G., The stochastic finite element method: Past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 9-12, 1031-1051 (2009) · Zbl 1229.74140
[3] Binder, K., Applications of the Monte Carlo method in statistical physics, (Topics in Current Physics, vol. 60 (1997), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg)
[4] Vanmarcke, E. H.; Grigoriu, M., Stochastic Finite Element Analysis of Simple Beams (1983)
[5] Benaroya, H.; Rehak, M., Finite element methods in probabilistic structural analysis: a selective review, Appl. Mech. Rev., 41, 5, 201-213 (1988)
[6] Berthaume, M. A.; Dechow, P. C.; Iriarte-Diaz, J.; Ross, C. F.; Strait, D. S.; Wang, Q.; Grosse, I. R., Probabilistic finite element analysis of a craniofacial finite element model, J. Theoret. Biol., 300, 242-253 (2012) · Zbl 1397.92043
[7] Boulkaibet, I.; Mthembu, L.; Marwala, T.; Friswell, M. I.; Adhikari, S., Finite element model updating using the shadow hybrid Monte Carlo technique, Mech. Syst. Signal Process., 52-53, 1, 115-132 (2015)
[8] Elishakoff, I., Possible limitations of probabilistic methods in engineering, Appl. Mech. Rev., 53, 2, 19 (2000)
[9] Vandepitte, D.; Moens, D., Quantification of uncertain and variable model parameters in non-deterministic analysis, (IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, Vol. 27, Saint Petersburg (2011)), 15-28
[10] Farkas, L.; Moens, D.; Vandepitte, D.; Desmet, W., Fuzzy finite element analysis based on reanalysis technique, Struct. Saf., 32, 6, 442-448 (2010)
[11] Moens, D.; Hanss, M., Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances, Finite Elem. Anal. Des., 47, 1, 4-16 (2011)
[12] W. Desmet, D. Vandepitte, M. De Munck, W. Verhaeghe, D. Moens, Recent advances in interval and fuzzy finite element, in: Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling, no. 2007, Sao Sebastiao, Brazil, 2012.; W. Desmet, D. Vandepitte, M. De Munck, W. Verhaeghe, D. Moens, Recent advances in interval and fuzzy finite element, in: Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling, no. 2007, Sao Sebastiao, Brazil, 2012.
[13] Hanss, M., The transformation method for the simulation and analysis of systems with uncertain parameters, Fuzzy Sets and Systems, 130, 3, 277-289 (2002) · Zbl 1015.65005
[14] T. Haag, M. Hanss (sup ), D. Moens (cosup ), L. Gaul (cosup ), Forward and inverse fuzzy arithmetic for uncertainty analysis with applications to structural mechanics (2012) 132.; T. Haag, M. Hanss (sup ), D. Moens (cosup ), L. Gaul (cosup ), Forward and inverse fuzzy arithmetic for uncertainty analysis with applications to structural mechanics (2012) 132.
[15] Khodaparast, H. H.; Mottershead, J. E.; Badcock, K. J., Interval model updating with irreducible uncertainty using the Kriging predictor, Mech. Syst. Signal Process., 25, 4, 1204-1206 (2011)
[16] Haddad Khodaparast, H.; Govers, Y.; Adhikari, S.; Link, M.; Friswell, M. I.; Mottershead, J. E.; Sienz, J., Fuzzy model updating and its application to the DLR AIRMOD test structure, (Sas, P.; Moens, D.; Denayer, H., Proceedings of the International Conference on Uncertainty in Structural Dynamics, USD 2014 (2014), {KU}{L}euven: {KU}{L}euven Leuven, Belgium), 4509-4522
[17] Serhat Erdogan, Y.; Gundes Bakir, P., Inverse propagation of uncertainties in finite element model updating through use of fuzzy arithmetic, Eng. Appl. Artif. Intell., 26, 1, 357-367 (2013)
[18] Fedele, F.; Muhanna, R. L.; Xiao, N.; Mullen, R. L., Interval-Based approach for uncertainty propagation in inverse problems, J. Eng. Mech., 4, 1, 1-7 (2014)
[19] Fang, S.-E.; Zhang, Q.-H.; Ren, W.-X., An interval model updating strategy using interval response surface models, Mech. Syst. Signal Process., 60-61, 909-927 (2015)
[20] Elishakoff, I.; Sarlin, N., Uncertainty quantification based on pillars of experiment, theory, and computation. Part I: Data analysis, Mech. Syst. Signal Process., 74, 54-72 (2015)
[21] Elishakoff, I.; Sarlin, N., Uncertainty quantification based on pillars of experiment, theory, and computation. Part I: Data analysis, Mech. Syst. Signal Process., 74, 54-72 (2015)
[22] De Munck, M.; Moens, D.; Desmet, W.; Vandepitte, D., An efficient response surface based optimisation method for non-deterministic harmonic and transient dynamic analysis, CMES Comput. Model. Eng. Sci., 47, 2, 119-166 (2009) · Zbl 1231.90391
[23] Massa, F.; Tison, T.; Lallemand, B., A fuzzy procedure for the static design of imprecise structures, Comput. Methods Appl. Mech. Engrg., 195, 9-12, 925-941 (2006) · Zbl 1115.74052
[24] Klimke, A.; Nunes, R. F.; Wulmuth, B. I., Fuzzy arithmetic based on dimension-adaptive sparse grids a case study of a large-scale finite element model under uncertain parameters, Int. J. Uncertain., Fuzziness Knowl.-Based Syst., 14, 05, 561-577 (2006)
[25] Verhaeghe, W.; Desmet, W.; Vandepitte, D.; Moens, D., Random Field Expansion with interval Correlation Length Using interval Fields, (Eurodyn 2011 (2011), Leuven), 2662-2667
[26] Verhaeghe, W.; Desmet, W.; Vandepitte, D.; Moens, D., Interval fields to represent uncertainty on the output side of a static FE analysis, Comput. Methods Appl. Mech. Engrg., 260, 0, 50-62 (2013) · Zbl 1286.65171
[27] W. Verhaeghe, W. Desmet, D. Vandepitte, D. Moens, Interval fields: Capturing spatial uncertainty within a non-probabilistic Framework, in: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, no. 2, 2013, pp. 2963-2969.; W. Verhaeghe, W. Desmet, D. Vandepitte, D. Moens, Interval fields: Capturing spatial uncertainty within a non-probabilistic Framework, in: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, no. 2, 2013, pp. 2963-2969.
[28] Sofi, A.; Muscolino, G.; Elishakoff, I., Natural frequencies of structures with interval parameters, J. Sound Vib., 347, 79-95 (2015)
[29] Sofi, A.; Muscolino, G.; Elishakoff, I., Static response bounds of timoshenko beams with spatially varying interval uncertainties, Acta Mech., 226, 11, 3737-3748 (2015) · Zbl 1401.74176
[30] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M., Computational Geometry (2008), Springer: Springer Berlin, Heidelberg · Zbl 1140.68069
[31] Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H., The quickhull algorithm for convex hulls, ACM Trans. Math. Software, 22, 4, 469-483 (1996) · Zbl 0884.65145
[32] Kim, T. S.; Kim, Y. Y., MAC-based mode-tracking in structural topology optimization, Comput. Struct., 74, 3, 375-383 (2000)
[33] H. Weyl, Elementare theorie der konvexen polyeder, Comment. Math. Helv. 7 (1) (134) 290-306.; H. Weyl, Elementare theorie der konvexen polyeder, Comment. Math. Helv. 7 (1) (134) 290-306. · JFM 61.1382.01
[34] Alexandrov, A. D., Convex Polyhedra (2005) · Zbl 1067.52011
[35] Nocedal, J.; Wright, S. J., Numerical Optimization, 625 (1999) · Zbl 0930.65067
[36] Moens, D.; Vandepitte, D., Interval sensitivity theory and its application to frequency response envelope analysis of uncertain structures, Comput. Methods Appl. Mech. Engrg., 196, 21-24, 2486-2496 (2007) · Zbl 1173.74478
[37] W. De Mulder, D. Moens, D. Vandepitte, Modeling uncertainty in the context of finite element models with distance-based interpolation, in: Uncertainties 2012, Sao Paulo, Brazil, 2012.; W. De Mulder, D. Moens, D. Vandepitte, Modeling uncertainty in the context of finite element models with distance-based interpolation, in: Uncertainties 2012, Sao Paulo, Brazil, 2012.
[38] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: 23rd ACM National Conference, 1968, pp. 517-524 http://dx.doi.org/10.1145/800186.810616; D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: 23rd ACM National Conference, 1968, pp. 517-524 http://dx.doi.org/10.1145/800186.810616
[39] M. Imholz, D. Vandepitte, D. Moens, Derivation of an input interval field decomposition based on expert knowledge using locally defined basis functions, in: 1st ECCOMAS Thematic Conference on International Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 1-19.; M. Imholz, D. Vandepitte, D. Moens, Derivation of an input interval field decomposition based on expert knowledge using locally defined basis functions, in: 1st ECCOMAS Thematic Conference on International Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 1-19.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.