×

Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a bounded self-adjoint operator. (English) Zbl 1439.47044

Summary: We consider nonlinear eigenvalue problems of the form \[T x + \epsilon B(x) = \lambda x \tag{\(\ast\)}\], where \(T\) is a self-adjoint bounded linear operator acting in a real Hilbert space \(H\), and \(B : H \rightarrow H\) is a (possibly) nonlinear continuous perturbation term. Assuming that \(\lambda_0\) is an isolated eigenvalue of finite multiplicity of \(T\), we ask if, for \(\epsilon \neq 0\) and small, there are “eigenvalues” of \((\ast)\) near \(\lambda_0\), that is, numbers \(\lambda_\epsilon\) for which \((\ast)\) is satisfied by some normalized “eigenvector” \(x_\epsilon\) of \(T + \epsilon B\). We recall some recent results giving an affirmative answer to this question, and for these cases we prove – assuming, in addition, Lipschitz continuity on \(B\) – upper and lower bounds for the perturbed eigenvalues \(\lambda_\epsilon\) which are determined by those for the nonlinear Rayleigh quotient \(\langle B(v), v \rangle / \langle v, v \rangle\) with \(v\) in the eigenspace \(\operatorname{Ker}(T - \lambda_0 I)\). This yields particular information on the rate of convergence of \(\lambda_\epsilon\) to \(\lambda_0\) as \(\epsilon \rightarrow 0\). Applications are given in the sequence space \(l^2\) and in the Sobolev space \(H_0^1\) to deal with some nonlinearly perturbed ordinary or partial differential equations.

MSC:

47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
47A55 Perturbation theory of linear operators
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Benevieri, P.; Furi, M., On the concept of orientability for Fredholm maps between real Banach manifolds, Topol. Methods Nonlinear Anal., 16, 279-306 (2000) · Zbl 1007.47026
[2] Benguria, R.; Depassier, M. C., Upper and lower bounds for eigenvalues of nonlinear elliptic equations. I. The lowest eigenvalue, J. Math. Phys., 24, 501-503 (1983) · Zbl 0511.35067
[3] Berger, M. S., Nonlinearity and Functional Analysis (1977), Academic Press · Zbl 0368.47001
[4] Brown, R. F., The Lefschetz Fixed Point Theorem (1971), Scott and Foresman · Zbl 0216.19601
[5] Chabrowski, I., On nonlinear eigenvalue problems, Forum Math., 4, 359-375 (1992) · Zbl 0793.35068
[6] Chabrowski, I.; Drábek, P.; Tonkes, E., Asymptotic bifurcation result for quasilinear elliptic operators, Glasg. Math. J., 47, 55-67 (2005) · Zbl 1180.35085
[7] Chiappinelli, R., Isolated connected eigenvalues in nonlinear spectral theory, Nonlinear Funct. Anal. Appl., 8, 557-579 (2003) · Zbl 1064.47060
[8] Chiappinelli, R., A-priori bounds and asymptotics on the eigenvalues in bifurcation problems for perturbed self-adjoint operators, J. Math. Anal. Appl., 354, 1, 263-272 (2009) · Zbl 1193.47064
[9] Chiappinelli, R.; Furi, M.; Pera, M. P., Normalized eigenvectors of a perturbed linear operator via general bifurcation, Glasg. Math. J., 50, 303-318 (2008) · Zbl 1152.47051
[10] Chiappinelli, R.; Furi, M.; Pera, M. P., Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator, Appl. Math. Lett., 23, 193-197 (2010) · Zbl 1197.47073
[11] Chiappinelli, R.; Furi, M.; Pera, M. P., Persistence of the normalized eigenvectors of a perturbed operator in the variational case, Glasg. Math. J., 55, 629-638 (2013) · Zbl 1280.47021
[12] Chiappinelli, R.; Furi, M.; Pera, M. P., Topological persistence of the unit eigenvectors of a perturbed Fredholm operator of index zero, Z. Anal. Anwend., 33, 3, 347-367 (2014) · Zbl 1524.47069
[13] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. I (1953), Wiley · Zbl 0729.00007
[14] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[15] Kato, T., Perturbation Theory for Linear Operators (1976), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0342.47009
[16] Krasnosel’skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (1964), Macmillan: Macmillan New York · Zbl 0111.30303
[17] Laetsch, T., The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20, 1-13 (1970/1971) · Zbl 0215.14602
[18] Rabinowitz, P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Amer. Math. Soc. · Zbl 0609.58002
[19] Shibata, T., Precise spectral asymptotics for nonlinear Sturm-Liouville problems, J. Differential Equations, 180, 2, 374-394 (2002) · Zbl 1021.34068
[20] Shibata, T., Local structure of bifurcation curves for nonlinear Sturm-Liouville problems, J. Math. Anal. Appl., 369, 583-594 (2010) · Zbl 1200.34044
[21] Stuart, C. A., An introduction to bifurcation theory based on differential calculus, (Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, Res. Notes Math., vol. 39 (1979), Pitman), 76-135 · Zbl 0446.58005
[22] Tabatabaei, S. A.H. A.E.; Malek, A.; Shakour, E., Numerical solution for the nonlinear eigenvalue problems in bifurcation points, Appl. Math. Comput., 195, 2, 397-401 (2008) · Zbl 1132.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.