×

Reliability function determination of nonlinear oscillators under evolutionary stochastic excitation via a Galerkin projection technique. (English) Zbl 1439.35594

Summary: An approximate semi-analytical technique is developed for determining the response first-passage time probability density function of a class of lightly damped nonlinear oscillators subject to evolutionary stochastic excitation. Specifically, relying on a Markovian approximation of the response energy envelope, and on a stochastic averaging treatment, yields a backward Kolmogorov equation governing the evolution in time of the oscillator reliability function. Next, the backward Kolmogorov equation is solved by employing an appropriate orthogonal basis in conjunction with a Galerkin projection scheme. It is noted that the technique can account for arbitrary evolutionary excitation forms, even of the non-separable type. The special case of an undamped oscillator, for which relevant analytical results exist in the literature, is also included and studied in detail. Further, Markovian approximation of the potential energy envelope is considered as well. In comparison with the conventional amplitude-based energy envelope formulation, the intermediate step of linearizing the nonlinear stiffness element is circumvented, thus reducing the overall approximation degree of the technique. An additional significant advantage of the potential energy envelope formulation relates to the fact that its degree of accuracy appears rather insensitive to the nonlinearity magnitude (at least in the considered examples). Pertinent Monte Carlo simulation data are included in the numerical examples as well for assessing the accuracy of the technique.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65C30 Numerical solutions to stochastic differential and integral equations
Full Text: DOI

References:

[1] Vanvinckenroye, H., Andrianne, T., Denoël, V.: First passage time as an analysis tool in experimental wind engineering. J. Wind Eng. Ind. Aerodyn. 177, 366-375 (2018) · doi:10.1016/j.jweia.2018.03.032
[2] Tominaga, Y., Stathopoulos, T.: CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos. Environ. 79, 716-730 (2013) · doi:10.1016/j.atmosenv.2013.07.028
[3] Andrianne, T., de Ville de Goyet, V.: Mitigation of the torsional flutter phenomenon of bridge deck section during a lifting phase. In: 8th International Colloquium on Bluff Body Aerodynamics and Applications, Northeastern University, Boston, Massachusetts, USA (2016)
[4] Schuss, Z.: Theory and Applications of Stochastic Processes, Vol. 170 of Applied Mathematical Sciences. Springer, New York (2010) · Zbl 1202.60005 · doi:10.1007/978-1-4419-1605-1
[5] Preumont, A.: Random Vibration and Spectral Analysis. Kluwer Academic Publishers, Dordrecht (1994) · Zbl 0847.70002 · doi:10.1007/978-94-017-2840-9
[6] Bergman, L.A., Heinrich, J.C.: On the moments of time to first passage of the linear oscillator. Earthq. Eng. Struct. Dyn. 9(3), 197-204 (1981) · doi:10.1002/eqe.4290090302
[7] Vanvinckenroye, H., Denoël, V.: Average first-passage time of a quasi-Hamiltonian Mathieu oscillator with parametric and forcing excitations. J. Sound Vib. 406, 328-345 (2017) · doi:10.1016/j.jsv.2017.06.012
[8] Vanvinckenroye, H., Denoël, V.: Second-order moment of the first passage time of a quasi-Hamiltonian oscillator with stochastic parametric and forcing excitations. J. Sound Vib. 427, 178-187 (2018) · doi:10.1016/j.jsv.2018.03.001
[9] Lin, Y.K.Y.-K.: Probabilistic Theory of Structural Dynamics. R.E. Krieger Pub. Co, Malabar (1976) · Zbl 0359.70052
[10] Crandall, S.: First-crossing probabilities of the linear oscillator. J. Sound Vib. 12(3), 285-299 (1970) · Zbl 0195.54504 · doi:10.1016/0022-460X(70)90073-8
[11] Yang, J., Shinozuka, M.: First-passage time problem. J. Acoust. Soc. Am. 47(1B), 393-394 (1970) · doi:10.1121/1.1911524
[12] Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications-Fifth Edition, pp. 1-5 (2003) · Zbl 1025.60026
[13] Kovaleva, A.: An exact solution of the first-exit time problem for a class of structural systems. Probab. Eng. Mech. 24(3), 463-466 (2009) · doi:10.1016/j.probengmech.2009.01.002
[14] Naess, A., Gaidai, O.: Monte Carlo methods for estimating the extreme response of dynamical systems. J. Eng. Mech. 134(8), 628-636 (2008) · doi:10.1061/(ASCE)0733-9399(2008)134:8(628)
[15] Au, S.-K., Wang, Y.: Engineering risk assessment and design with subset simulation (2014)
[16] Grigoriu, M.: Stochastic Calculus: Applications in Science and Engineering. Springer, Birkhäuser (2002) · Zbl 1015.60001 · doi:10.1007/978-0-8176-8228-6
[17] Kougioumtzoglou, I.A., Zhang, Y., Beer, M.: Softening Duffing Oscillator Reliability assessment subject to evolutionary stochastic excitation. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2(2), C4015001 (2016) · doi:10.1061/AJRUA6.0000828
[18] Vanmarcke, E.H.: On the distribution of the first-passage time for normal stationary random processes. J. Appl. Mech. 42(1), 215 (1975) · Zbl 0324.70028 · doi:10.1115/1.3423521
[19] Náprstek, J., Král, R.: Evolutionary analysis of Fokker-Planck equation using multi-dimensional Finite Element Method. Procedia Eng. 199, 735-740 (2017) · doi:10.1016/j.proeng.2017.09.033
[20] Canor, T., Denoël, V.: Transient Fokker-Planck-Kolmogorov equation solved with smoothed particle hydrodynamics method. Int. J. Numer. Methods Eng. 94(6), 535-553 (2013) · Zbl 1352.76095 · doi:10.1002/nme.4461
[21] Coleman, J.J.: Reliability of aircraft structures in resisting chance failure. Oper. Res. 7(5), 639-645 (1959) · Zbl 1255.90054 · doi:10.1287/opre.7.5.639
[22] Kougioumtzoglou, I.A., Spanos, P.D.: Stochastic response analysis of the softening Duffing oscillator and ship capsizing probability determination via a numerical path integral approach. Probab. Eng. Mech. 35, 67-74 (2014) · doi:10.1016/j.probengmech.2013.06.001
[23] Zhang, Y., Kougioumtzoglou, I.A.: Nonlinear oscillator stochastic response and survival probability determination via the Wiener path integral. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 1(2), 021005 (2015) · doi:10.1115/1.4029754
[24] Spanos, P.D., Kougioumtzoglou, I.A.: Galerkin scheme based determination of first-passage probability of nonlinear system response. Struct. Infrastruct. Eng. 10(10), 1285-1294 (2014) · doi:10.1080/15732479.2013.791328
[25] Yurchenko, D., Mo, E., Naess, A.: Reliability of strongly nonlinear single degree of freedom dynamic systems by the path integration method. J. Appl. Mech. 75(6), 061016 (2008) · doi:10.1115/1.2967896
[26] Li, J., Chen, J.: Stochastic Dynamics of Structures. Wiley, New York (2009) · Zbl 1170.74003 · doi:10.1002/9780470824269
[27] Kougioumtzoglou, I., Spanos, P.: An approximate approach for nonlinear system response determination under evolutionary stochastic excitation. Curr. Sci. 97, 1203-1211 (2009)
[28] Lin, Y., Cai, G.: Some thoughts on averaging techniques in stochastic dynamics. Probab. Eng. Mech. 15(1), 7-14 (2000) · doi:10.1016/S0266-8920(99)00004-1
[29] Red-Horse, J., Spanos, P.: A generalization to stochastic averaging in random vibration. Int. J Non-Linear Mech. 27(1), 85-101 (1992) · Zbl 0756.70029 · doi:10.1016/0020-7462(92)90025-3
[30] Roberts, J.J., Spanos, P.P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21(2), 111-134 (1986) · Zbl 0582.73077 · doi:10.1016/0020-7462(86)90025-9
[31] Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41(5), 189 (1988) · doi:10.1115/1.3151891
[32] Proppe, C., Pradlwarter, H., Schuëller, G.: Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probab. Eng. Mech. 18(1), 1-15 (2003) · doi:10.1016/S0266-8920(02)00037-1
[33] Socha, L.: Linearization Methods for Stochastic Dynamic Systems, pp. 1-5. Springer, Berlin (2008) · Zbl 1145.60034 · doi:10.1007/978-3-540-72997-6_1
[34] Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover Publications, Mineola (2003) · Zbl 1073.70001
[35] Spanos, P.-T.D.: Numerics for common first-passage problem. J. Eng. Mech. Div. 108(5), 864-882 (1982)
[36] Spanos, P.D., Di Matteo, A., Cheng, Y., Pirrotta, A., Li, J.: Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements. J. Appl. Mech. 83(12), 121003 (2016) · doi:10.1115/1.4034460
[37] Di Matteo, A., Spanos, P.D., Pirrotta, A.: Approximate survival probability determination of hysteretic systems with fractional derivative elements. Probab. Eng. Mech. 54, 138-146 (2018) · doi:10.1016/j.probengmech.2017.10.001
[38] Spanos, P., Solomos, G.P.: Barrier crossing due to transient excitation. J. Eng. Mech. 110(1), 20-36 (1984) · doi:10.1061/(ASCE)0733-9399(1984)110:1(20)
[39] Canor, T., Caracoglia, L., Denoël, V.: Perturbation methods in evolutionary spectral analysis for linear dynamics and equivalent statistical linearization. Probab. Eng. Mech. 46, 1-17 (2016) · doi:10.1016/j.probengmech.2016.07.001
[40] Luo, A.C.J., Huang, J.: Analytical period-3 motions to chaos in a hardening Duffing oscillator. Nonlinear Dyn. 73(3), 1905-1932 (2013) · doi:10.1007/s11071-013-0913-9
[41] Xu, Y., Li, Y., Liu, D., Jia, W., Huang, H.: Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dyn. 74(3), 745-753 (2013) · Zbl 1279.34095 · doi:10.1007/s11071-013-1002-9
[42] Spanos, P.D., Red-Horse, J.R.: Nonstationary solution in nonlinear random vibration. J. Eng. Mech. 114(11), 1929-1943 (1988) · Zbl 0667.70034 · doi:10.1061/(ASCE)0733-9399(1988)114:11(1929)
[43] Spanos, P.D., Kougioumtzoglou, I.A., dos Santos, K.R.M., Beck, A.T.: Stochastic averaging of nonlinear oscillators: Hilbert transform perspective. J. Eng. Mech. 144(2), 04017173 (2018) · doi:10.1061/(ASCE)EM.1943-7889.0001410
[44] Primožič, T.: Estimating expected first passage times using multilevel Monte Carlo algorithm, M.Sc. in Mathematical and Computational Finance University
[45] Chunbiao, G., Bohou, X.: First-passage time of quasi-non-integrable-Hamiltonian system. Acta Mechanica Sinica 16(2), 183-192 (2000) · doi:10.1007/BF02486710
[46] Liang, J., Chaudhuri, S.R., Shinozuka, M.: Simulation of nonstationary stochastic processes by spectral representation. J. Eng. Mech. 133(6), 616-627 (2007) · doi:10.1061/(ASCE)0733-9399(2007)133:6(616)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.