×

Solitary waves in atomic chains and peridynamical media. (English) Zbl 1439.35473

Summary: Peridynamics describes the nonlinear interactions in spatially extended Hamiltonian systems by nonlocal integro-differential equations, which can be regarded as the natural generalization of lattice models. We prove the existence of solitary traveling waves for super-quadratic potentials by maximizing the potential energy subject to both a norm and a shape constraint. We also discuss the numerical computation of waves and study several asymptotic regimes.

MSC:

35Q82 PDEs in connection with statistical mechanics
82D20 Statistical mechanics of solids
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
35C08 Soliton solutions
35B40 Asymptotic behavior of solutions to PDEs
35B10 Periodic solutions to PDEs
35R09 Integro-partial differential equations
45K05 Integro-partial differential equations
81V45 Atomic physics
35A15 Variational methods applied to PDEs

References:

[1] Chen F., Wandernde Wellen in FPU-Gittern, Masters thesis, Saarland University, Germany. (2013)
[2] Chen F., Traveling waves in two-dimensional FPU lattices, PhD thesis, University of Münster, Germany. (2017) · Zbl 1378.76001
[3] Chen F.; Herrmann M., KdV-like solitary waves in two-dimensional FPU-lattices, Discrete Contin Dyn Syst A, 38, 2305-2332 (2018) · Zbl 1400.37095 · doi:10.3934/dcds.2018095
[4] Dayal K.; Bhattacharya K., Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J Mech Phys Solids, 54, 1811-1842 (2006) · Zbl 1120.74690 · doi:10.1016/j.jmps.2006.04.001
[5] English JM; Pego RL, On the solitary wave pulse in a chain of beads, Proc Amer Math Soc, 133, 1763-1768 (2005) · Zbl 1063.35146 · doi:10.1090/S0002-9939-05-07851-2
[6] Filip AM; Venakides S., Existence and modulation of traveling waves in particle chains, Comm Pure Appl Math, 52, 693-735 (1999) · Zbl 0928.34010 · doi:10.1002/(SICI)1097-0312(199906)52:63.0.CO;2-9
[7] Friesecke G.; Matthies K., Atomic-scale localization of high-energy solitary waves on lattices, Phys D, 171, 211-220 (2002) · Zbl 1064.82022
[8] Friesecke G.; Mikikits-Leitner A., Cnoidal waves on Fermi-Pasta-Ulam lattices, J Dyn Differ Equ, 27, 627-652 (2015) · Zbl 1382.37080 · doi:10.1007/s10884-013-9343-0
[9] Friesecke G.; Pego RL, Solitary waves on FPU lattices, I. Qualitative properties, renormalization and continuum limit. Nonlinearity, 12, 1601-1627 (1999) · Zbl 0962.82015
[10] Friesecke G.; Pego RL, Solitary waves on FPU lattices, II. Linear implies nonlinear stability. Nonlinearity, 15, 1343-1359 (2002) · Zbl 1102.37311
[11] Friesecke G.; Pego RL, Solitary waves on Fermi-Pasta-Ulam lattices, III. Howland-type Floquet theory. Nonlinearity, 17, 207-227 (2004) · Zbl 1103.37049
[12] Friesecke G.; Pego RL, Solitary waves on Fermi-Pasta-Ulam lattices, IV. Proof of stability at low energy. Nonlinearity, 17, 229-251 (2004) · Zbl 1103.37050
[13] Friesecke G.; Wattis JAD, Existence theorem for solitary waves on lattices, Commun Math Phys, 161, 391-418 (1994) · Zbl 0807.35121 · doi:10.1007/BF02099784
[14] Gaison J.; Moskow S.; Wright JD; et al., Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model Sim, 12, 953-995 (2014) · Zbl 1317.37100 · doi:10.1137/130941638
[15] Herrmann M., Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc Math Roy Soc Edinb, 140, 753-785 (2010) · Zbl 1205.37083 · doi:10.1017/S0308210509000146
[16] Herrmann M., Action minimizing fronts in general FPU-type chains, J Nonlinear Sci, 21, 33-55 (2011) · Zbl 1214.37050 · doi:10.1007/s00332-010-9075-9
[17] Herrmann M., High-energy waves in superpolynomial FPU-type chains, J Nonlinear Sci, 27, 213-240 (2017) · Zbl 1378.37119
[18] Herrmann M.; Matthies K., Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains, Nonlinearity, 28, 2767-2789 (2015) · Zbl 1342.37074 · doi:10.1088/0951-7715/28/8/2767
[19] Herrmann M.; Matthies K., Stability of High-Energy Solitary Waves in Fermi-Pasta-Ulam-Tsingou Chains, Trans Amer Math Soc, arXiv: 1709.00948. (2017) · Zbl 1428.37070
[20] Herrmann M.; Matthies K., Uniqueness of solitary waves in the high-energy limit of FPU type chains, In: Gurevich, P, , Hell, J., Sandstede, B., et al. Editors, Patterns of Dynamics, Springer, Cham, 3-15. (2017)
[21] Herrmann M.; Matthies K.; Schwetlick H.; et al., Subsonic phase transition waves in bistable lattice models with small spinodal region, SIAM J Math Anal, 45, 2625-2645 (2013) · Zbl 1287.37054 · doi:10.1137/120877878
[22] Herrmann M.; Mikikits-Leitner A., KdV waves in atomic chains with nonlocal interactions, Discrete Contin Dyn Syst, 36, 2047-2067 (2016) · Zbl 1343.37076
[23] Herrmann M.; Rademacher JDM, Heteroclinic travelling waves in convex FPU-type chains, SIAM J Math Anal, 42, 1483-1504 (2010) · Zbl 1232.37040 · doi:10.1137/080743147
[24] Hewer B., Nichtlineare Wellen in nicht-lokalen atomaren Ketten, Bachelors thesis, Saarland University, Germany. (2013)
[25] Hoffman A.; Wayne CE, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice, Nonlinearity, 21, 2911-2947 (2008) · Zbl 1153.82323 · doi:10.1088/0951-7715/21/12/011
[26] Hoffman A.; Wayne CE, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J Dyn Differ Equ, 21, 343-351 (2009) · Zbl 1172.35066 · doi:10.1007/s10884-009-9134-9
[27] Hoffman A.; Wayne CE, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit, In: Mallet-Paret J, , Wu J., Yi Y., et al. Editors, Infinite Dimensional Dynamical Systems, New York: Springer, 185-192. (2013) · Zbl 1275.37035
[28] Hoffman A.; Wright JD, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys D, 358, 33-59 (2017) · Zbl 1378.35067
[29] Iooss G.; James G., Localized waves in nonlinear oscillator chains, Chaos, 15, 015113 (2005) · Zbl 1080.37080 · doi:10.1063/1.1836151
[30] Iooss G.; Kirchgässner K., Travelling waves in a chain of coupled nonlinear oscillators, Commun Math Phys, 211, 439-464 (2000) · Zbl 0956.37055 · doi:10.1007/s002200050821
[31] James G., Periodic travelling waves and compactons in granular chains, J Nonlinear Sci, 22, 813-848 (2012) · Zbl 1254.37048 · doi:10.1007/s00332-012-9128-3
[32] James G.; Pelinovsky D., Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials, Proc R Soc A, 470, 20130462 (2014) · Zbl 1371.37130 · doi:10.1098/rspa.2013.0462
[33] Mizumachi T., Asymptotic stability of lattice solitons in the energy space, Commun Math Phys, 288, 125-144 (2009) · Zbl 1190.82023 · doi:10.1007/s00220-009-0768-6
[34] Pankov A., Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press. (2005) · Zbl 1088.35001
[35] Angulo Pava J.; Brango BC; Silva JD; et al., The regularized Boussinesq equation: instability of periodic traveling waves, J Differ Equations, 254, 3994-4023 (2013) · Zbl 1452.35156 · doi:10.1016/j.jde.2013.01.034
[36] Pego RL; Van TS, Existence of solitary waves in one dimensional peridynamics, J Elast, arXiv: 1802.00516. (2018)
[37] Pelinovsky D.; Stepanyants Y., Convergence of Petviashvili”s iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J Numer Anal, 42, 1110-1127 (2004) · Zbl 1086.65098 · doi:10.1137/S0036142902414232
[38] Schneider G.; Wayne CE, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In: International Conference on Differential Equations, World Sci, Publ., River Edge, NJ, 2000, 390-404. (1999) · Zbl 0970.35126
[39] Schwetlick H.; Zimmer J., Kinetic relations for a lattice model of phase transitions, Arch Ration Mech Anal, 206, 707-724 (2012) · Zbl 1295.74076 · doi:10.1007/s00205-012-0566-8
[40] Silling SA, Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, 48, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[41] Silling SA, Solitary waves in a peridynamic elastic solid, J Mech Phys Solids, 96, 121-132 (2016) · Zbl 1482.74102 · doi:10.1016/j.jmps.2016.06.001
[42] Silling SA; Lehoucq RB, Peridynamic theory of solid mechanics, Adv Appl Mech, 44, 73-168 (2010) · doi:10.1016/S0065-2156(10)44002-8
[43] Starosvetsky Y.; Vainchtein A., Solitary waves in FPU lattices with alternating bond potentials, Mech Res Commun, 93, 148-153 (2018) · doi:10.1016/j.mechrescom.2017.10.007
[44] Stefanov A.; Kevrekidis PG, On the existence of solitary traveling waves for generalized Hertzian chains, J Nonlinear Sci, 22, 327-349 (2012) · Zbl 1266.37044 · doi:10.1007/s00332-011-9119-9
[45] Treschev D., Travelling waves in FPU lattices, Discrete Cont Dyn S, 11, 867-880 (2004) · Zbl 1060.37069 · doi:10.3934/dcds.2004.11.867
[46] Truskinovsky L.; Vainchtein A., Kinetics of martensitic phase transitions: lattice model, SIAM J Appl Math, 66, 533-553 (2005) · Zbl 1136.74362 · doi:10.1137/040616942
[47] Truskinovsky L.; Vainchtein A., Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain, Phys Rev E, 90, 042903 (2014) · doi:10.1103/PhysRevE.90.042903
[48] Weinstein MI, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12, 673-691 (1999) · Zbl 0984.35147 · doi:10.1088/0951-7715/12/3/314
[49] Zabusky NJ; Kruskal MD, Interaction of ”solitons’ in a collisionless plasma and the recurrence of initial states, Phys Rev Lett, 15, 240-243 (1965) · Zbl 1201.35174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.