×

Nonlinear wave equation with both strongly and weakly damped terms: supercritical initial energy finite time blow up. (English) Zbl 1439.35343

This paper deals with the blow-up problem for equation \[ u_{tt}-\Delta u-\omega\Delta u_t+\mu u_t = |u|^{p-2}u, \] where \((x,t)\in\Omega\times\mathbb{R}_+^*\), with Dirichlet boundary conditions, with \(\omega\geq 0\), and \(\mu\geq 0\). Here, \(\Omega\) is a smooth bounded domain of \(\mathbb{R}^n\) (\(n\geq 1\)), and \(p>2\) if \(n\leq 2\), \(p\in(2, 2n/(n-2)]\) if \(n\geq 3\) and \(\omega>0\), and \(p\in(2, 2(n-1)/(n-2)]\) if \(n\geq 3\) and \(\omega=0\). The main result states that solutions blow-up in finite time if the \(L^2\)-scalar product of the Cauchy data \(u_0\) and \(u_1\) is large enough for \(t=0\) (see eq. (9) of the paper). The paper relies on a paper by F. Gazzola and M. Squassina [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, No. 2, 185–207 (2006; Zbl 1094.35082)] on this equation.

MSC:

35L71 Second-order semilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35B44 Blow-up in context of PDEs
35B25 Singular perturbations in context of PDEs

Citations:

Zbl 1094.35082
Full Text: DOI

References:

[1] B. Bilgin; V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403, 89-94 (2013) · Zbl 1282.35086 · doi:10.1016/j.jmaa.2013.01.056
[2] L. Bociu; I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249, 654-683 (2010) · Zbl 1200.35188 · doi:10.1016/j.jde.2010.03.009
[3] H. Chen; G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80, 1808-1836 (2015) · Zbl 1338.35420 · doi:10.1093/imamat/hxv018
[4] F. Gazzola; M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 185-207 (2006) · Zbl 1094.35082 · doi:10.1016/j.anihpc.2005.02.007
[5] S. Gerbi; B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5, 559-566 (2012) · Zbl 1246.35036 · doi:10.3934/dcdss.2012.5.559
[6] S. Gerbi; B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2, 163-193 (2013) · Zbl 1273.35175
[7] P. Graber; B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66, 81-122 (2012) · Zbl 1262.35167 · doi:10.1007/s00245-012-9165-1
[8] G. Liu; S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70, 1345-1356 (2015) · Zbl 1443.35104 · doi:10.1016/j.camwa.2015.07.021
[9] Y. Liu; R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244, 200-228 (2008) · Zbl 1138.35066 · doi:10.1016/j.jde.2007.10.015
[10] G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66, 129-134 (2015) · Zbl 1320.35098 · doi:10.1007/s00033-014-0400-2
[11] B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23, 79-92 (2010) · Zbl 1240.35342
[12] J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. · Zbl 1272.35048
[13] H. Song; D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19, 245-251 (2014) · Zbl 1297.35056 · doi:10.1016/j.na.2014.06.012
[14] H. Song; C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11, 3877-3883 (2010) · Zbl 1213.35143 · doi:10.1016/j.nonrwa.2010.02.015
[15] Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136, 3477-3482 (2008) · Zbl 1154.35064 · doi:10.1090/S0002-9939-08-09514-2
[16] Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74, 392-415 (2009) · Zbl 1169.35301 · doi:10.1093/imamat/hxp004
[17] T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53, 29-43 (2014) · Zbl 1309.74026 · doi:10.1007/s00466-013-0890-3
[18] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68, 459-468 (2010) · Zbl 1200.35035
[19] R. Xu; Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71, 401-415 (2013) · Zbl 1275.35136 · doi:10.1090/s0033-569x-2012-01295-6
[20] R. Xu; Y. Yang; Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92, 138-157 (2013) · Zbl 1282.35226 · doi:10.1080/00036811.2011.601456
[21] R. Xu; Y. Yang; B. Liu; J. Shen; S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order “good” Boussinesq equation, Z. Angew. Math. Phys., 66, 955-976 (2015) · Zbl 1320.35290 · doi:10.1007/s00033-014-0459-9
[22] X. Zhu; F. Li; T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14, 2465-2485 (2015) · Zbl 1328.35118 · doi:10.3934/cpaa.2015.14.2465
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.