×

Consensus of fractional multi-agent systems by distributed event-triggered strategy. (English) Zbl 1439.34034

Summary: In this manuscript, the problem of event-triggered consensus for fractional general linear multi-agent systems is investigated, which include integer-order general linear multi-agent systems as the special case. A distributed event-triggered strategy is proposed to utilize in fractional multi-agent systems, under which the network can achieve consensus. Also, Zeno behavior can be precluded to ensure the feasibility of the devised event-triggered strategy. Furthermore, in order to avoid keeping track of the measurement errors continuously, a self-triggered strategy is designed, in which the next update time instant of each agent can be computed by using its local history state information. Finally, some numerical simulations are presented to indicate the validity of the devised control strategies.

MSC:

34B45 Boundary value problems on graphs and networks for ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
93A16 Multi-agent systems
Full Text: DOI

References:

[1] Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465-1476 (2004) · Zbl 1365.90056 · doi:10.1109/TAC.2004.834433
[2] Xue, D., Cao, J., Chen, G., Yu, Y.L.: Formation control of networked multi-agent systems. IET Control Theory Appl. 4(10), 2168-2176 (2010) · doi:10.1049/iet-cta.2009.0574
[3] Wen, G., Dusn, Z., Yu, W., Chen, G.: Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonlinear Control 22(2), 170-182 (2012) · Zbl 1244.93018 · doi:10.1002/rnc.1687
[4] Jadbabaie, A., Lin, J., Morse, S.A.: Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988-1001 (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[5] Tian, Y.P., Liu, C.L.: Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans. Autom. Control 53(9), 2122-2128 (2008) · Zbl 1367.93411 · doi:10.1109/TAC.2008.930184
[6] Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841-846 (2005) · Zbl 1365.93406 · doi:10.1109/TAC.2005.849233
[7] Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[8] Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control. Springer, London (2008) · Zbl 1144.93002 · doi:10.1007/978-1-84800-015-5
[9] Yu, W., Chen, G., Ren, W., Kurths, J., Zheng, W.: Distributed higher order consensus protocols in multiagent dynamical systems. IEEE Trans. Circuits Syst. I Reg. Papers 58(8), 1924-1932 (2011) · Zbl 1468.93044 · doi:10.1109/TCSI.2011.2106032
[10] Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786-1791 (2013) · Zbl 1369.93032 · doi:10.1109/TAC.2012.2235715
[11] Yu, W., Chen, G., Cao, M.: Consensus in directed networks of agents with nonlinear dynamics. IEEE Trans. Autom. Control 56(6), 1436-1441 (2011) · Zbl 1368.93015 · doi:10.1109/TAC.2011.2112477
[12] Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agents via pinning control. Syst. Control Lett. 59(9), 553-562 (2010) · Zbl 1213.37131 · doi:10.1016/j.sysconle.2010.06.016
[13] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[14] Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Oxford (2006) · Zbl 1092.45003
[15] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[16] Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Theol. 27(3), 201-210 (1983) · Zbl 0515.76012
[17] Cao, Y., Li, Y., Ren, W., Chen, Y.: Distributed coordination of networked fractional-order systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 362-370 (2010) · doi:10.1109/TSMCB.2009.2024647
[18] Yang, H., Zhu, X., Cao, K.: Distributed coordination of fractional order multi-agent systems with communication delays. Fract. Calc. Appl. Anal. 17, 23-37 (2014) · Zbl 1312.93086 · doi:10.2478/s13540-014-0153-9
[19] Song, C., Cao, J., Liu, Y.: Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information. Neurocomputing 165, 293-299 (2015) · doi:10.1016/j.neucom.2015.03.019
[20] Ren, G., Yu, Y.: Robust consensus of fractional multi-agent systems with external disturbances. Neurocomputin 218, 339-345 (2016) · doi:10.1016/j.neucom.2016.08.088
[21] Yu, W., Li, Y., Wen, G., Yu, X., Cao, J.: Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two. IEEE Trans. Autom. Control 62(2), 894-900 (2017) · Zbl 1364.93497 · doi:10.1109/TAC.2016.2560145
[22] Ren, G., Yu, Y.: Consensus of fractional multi-agent systems using distributed adaptive protocols. Asian J. Control 19(6), 2076-2084 (2017) · Zbl 1386.93017 · doi:10.1002/asjc.1589
[23] Yu, Z., Jiang, H., Hu, C., Yu, J.: Leader-following consensus of fractional-order multi-agent systems via adaptive pinning control. Int. J. Control 88(9), 1746-1756 (2015) · Zbl 1338.93039 · doi:10.1080/00207179.2015.1015807
[24] Yin, X., Yue, D., Hu, S.: Consensus of fractional-order heterogeneous multi-agent systems. IET Control Theory A. 7(2), 314-322 (2013) · doi:10.1049/iet-cta.2012.0511
[25] Bai, J., Wen, G., Rahmani, A., Chu, X., Yu, Y.: Consensus with a reference state for fractional-order multi-agent systems. Int. J. Syst. Sci. 47(1), 222-234 (2016) · Zbl 1333.93003 · doi:10.1080/00207721.2015.1056273
[26] Chen, J., Guan, Z.H., Yang, C., Li, T., He, D.X., Zhang, X.H.: Distributed containment control of fractional-order uncertain multi-agent systems. J. Franklin I. 353(7), 1672-1688 (2016) · Zbl 1336.93014 · doi:10.1016/j.jfranklin.2016.02.002
[27] Gong, P.: Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies. IET Control Theory A. 10(18), 2515-2525 (2016) · doi:10.1049/iet-cta.2016.0606
[28] Zhu, W., Chen, B., Yang, J.: Consensus of fractional-order multi-agent systems with input time delay. Fract. Calc. Appl. Anal. 20(1), 52-70 (2017) · Zbl 1358.93026 · doi:10.1515/fca-2017-0003
[29] Ma, X., Sun, F., Li, H., He, B.: The consensus region design and analysis of fractional-order multi-agent systems. Int. J. Syst. Sci. 48(3), 629-636 (2017) · Zbl 1358.93012 · doi:10.1080/00207721.2016.1218570
[30] Ma, T., Li, T., Cui, B.: Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control. Int. J. Syst. Sci. 49(1), 1-14 (2018) · Zbl 1385.93003 · doi:10.1080/00207721.2017.1397805
[31] Abdulghafor, R., Turaev, S.: Consensus of fractional nonlinear dynamics stochastic operators for multi-agent systems. Inf. Fusion 44, 1-21 (2018) · doi:10.1016/j.inffus.2017.11.003
[32] Liu, J., Qin, K., Chen, W., Li, P., Shi, M.: Consensus of fractional-order multiagent systems with nonuniform time delays. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/2850757 · Zbl 1426.93011
[33] Wang, F., Yang, Y.: Leader-following exponential consensus of fractional order nonlinear multi-agents system with hybrid time-varying delay: a heterogeneous impulsive method. Physica A 482, 158-172 (2017) · Zbl 1495.93011 · doi:10.1016/j.physa.2017.04.049
[34] He, W., Chen, G., Han, Q.L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145-158 (2017) · Zbl 1429.68027 · doi:10.1016/j.ins.2015.06.005
[35] Guan, Z.H., Hu, B., Chi, M., He, D.X., Cheng, X.M.: Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica 50(9), 2415-2418 (2014) · Zbl 1297.93012 · doi:10.1016/j.automatica.2014.07.008
[36] Jiang, H., Yu, J., Zhou, C.: Consensus of multi-agent linear dynamic systems via impulsive control protocols. Int. J. Syst. Sci. 42(6), 967-976 (2011) · Zbl 1233.93005 · doi:10.1080/00207720903267866
[37] Ding, L., Yu, P., Liu, Z.W., Guan, Z.H., Feng, G.: Consensus of second-order multi-agent systems via impulsive control using sampled hetero-information. Automatica 49(9), 2881-2886 (2013) · Zbl 1364.93015 · doi:10.1016/j.automatica.2013.06.014
[38] Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Autom. Control 56(5), 1226-1231 (2011) · Zbl 1368.93424 · doi:10.1109/TAC.2011.2112472
[39] Liu, Z.W., Yu, X., Guan, Z.H., Hu, B., Li, C.: Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans. Syst. Man Cybern. 47(5), 783-793 (2017) · doi:10.1109/TSMC.2016.2524063
[40] Yu, Z., Jiang, H., Hu, C., Yu, J.: Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control. IEEE Trans. Cybern. 47(8), 1892-1901 (2017) · doi:10.1109/TCYB.2017.2681718
[41] Li, H., Liao, X., Chen, G., Hill, D., Dong, Z., Huang, T.: Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Netw. 66, 1-10 (2015) · Zbl 1396.93091 · doi:10.1016/j.neunet.2015.01.006
[42] Aström, K.J., Bernhardsson, B.M.: Comparison of Riemann and Lebesgue sampling for first order stochastic systems. IEEE Conference Decision and Control. pp. 2011-2016 (2002)
[43] Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291-1297 (2012) · Zbl 1369.93019 · doi:10.1109/TAC.2011.2174666
[44] Zhu, W., Jiang, Z., Feng, G.: Event-based consensus of multi-agent systems with general linear models. Automatica 50(2), 552-558 (2014) · Zbl 1364.93489 · doi:10.1016/j.automatica.2013.11.023
[45] Hu, W., Liu, L., Feng, G.: Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy. IEEE Trans. Cybern. 47(8), 1914-1924 (2017) · doi:10.1109/TCYB.2016.2602327
[46] Cheng, Y., Ugrinovskii, V.: Event-triggered leader-following tracking control for multivariable multi-agent systems. Automatica 70, 204-210 (2016) · Zbl 1339.93075 · doi:10.1016/j.automatica.2016.04.003
[47] Fan, Y., Feng, G., Wang, Y., Song, C.: Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica 49(2), 671-675 (2013) · Zbl 1258.93004 · doi:10.1016/j.automatica.2012.11.010
[48] Kia, S., Cortés, J., Martinez, S.: Distributed event-triggered communication for dynamic average consensus in networked systems. Automatic 59, 112-119 (2015) · Zbl 1326.93007 · doi:10.1016/j.automatica.2015.06.011
[49] Nowzari, C., Cort’es, J.: Distributed event-triggered coordination for average consensus on weight-balanced digraphs. Automatica 68, 237-244 (2016) · Zbl 1334.93118 · doi:10.1016/j.automatica.2016.01.069
[50] Meng, X., Xie, L., Soh, Y.: Asynchronous periodic event-triggered consensus for multi-agent systems. Automatica 84, 214-220 (2017) · Zbl 1375.93083 · doi:10.1016/j.automatica.2017.07.008
[51] Gao, L., Liao, X., Li, H., Chen, G.: Event-triggered control for multi-agent network with limited digital communication. Nonlinear Dyn. 82(4), 1659-1669 (2015) · Zbl 1348.90172 · doi:10.1007/s11071-015-2267-y
[52] Li, H., Liao, X., Huang, T., Zhu, W.: Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans. Autom. Control 60(7), 1998-2003 (2015) · Zbl 1360.93031 · doi:10.1109/TAC.2014.2365073
[53] Li, L., Ho, D.W., Lu, J.: Event-based network consensus with communication delays. Nonlinear Dyn. 87(3), 1847-1858 (2017) · Zbl 1384.90021 · doi:10.1007/s11071-016-3157-7
[54] Zeng, D., Wu, K.T., Liu, Y., Zhang, R., Zhong, S.: Event-triggered sampling control for exponential synchronization of chaotic Lur’e systems with time-varying communication delays. Nonlinear Dyn. 91(2), 905-921 (2018) · Zbl 1390.34172 · doi:10.1007/s11071-017-3918-y
[55] Xiao, F., Chen, T., Gao, H.: Synchronous hybrid event-and time-driven consensus in multiagent networks with time delays. IEEE Trans. Cybern. 46(5), 1165-1174 (2016) · doi:10.1109/TCYB.2015.2428056
[56] Hu, W., Liu, L.: Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control. IEEE Trans. Cybern. 47(1), 105-116 (2017) · doi:10.1109/TCYB.2015.2508561
[57] Li, H., Chen, G., Huang, T., Dong, Z., Zhu, W., Gao, L.: Event-triggered distributed average consensus over directed digital networks with limited communication bandwidth. IEEE Trans. Cybern. 46(12), 3098-3110 (2016) · doi:10.1109/TCYB.2015.2496977
[58] Xing, L., Wen, C., Guo, F., Liu, Z., Su, H.: Event-based consensus for linear multiagent systems without continuous communication. IEEE Trans. Cybern. 47(8), 2132-2142 (2017) · doi:10.1109/TCYB.2016.2610419
[59] Liu, K., Ji, Z., Ren, W.: Necessary and sufficient conditions for consensus of second-order multiagent systems under directed topologies without global gain dependency. IEEE Trans. Cybern. 47(8), 2089-2098 (2017) · doi:10.1109/TCYB.2016.2616020
[60] Xu, W., Wang, Z., Daniel, W.: Finite-horizon \[{H^\infty }H\]∞ consensus for multiagent systems with redundant channels via an observer-type event-triggered scheme. IEEE Trans. Cybern. 48, 1567-1576 (2017)
[61] Zhao, M., Peng, C., He, W., Song, Y.: Event-triggered communication for leader-following consensus of second-order multiagent systems. IEEE Trans. Cybern. 48, 1888-1897 (2017) · doi:10.1109/TCYB.2017.2716970
[62] Seyboth, G.S., Dimarogonas, D.V., Johansson, K.H.: Event-based broadcasting for multi-agent average consensus. Automatica 49(1), 245-252 (2013) · Zbl 1257.93066 · doi:10.1016/j.automatica.2012.08.042
[63] Wang, F., Yang, Y.: Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control. Int. J. Syst. Sci. 48(3), 571-577 (2017) · Zbl 1358.93018 · doi:10.1080/00207721.2016.1193258
[64] Xu, G., Chi, M., He, D., Guan, Z., Zhang, D., Yu, Y.: Fractional-order consensus of multi-agent systems with event-triggered control. IEEE International Conference on Control Automation, pp. 619-624 (2014)
[65] Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York (2001) · Zbl 0968.05002 · doi:10.1007/978-1-4613-0163-9
[66] Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[67] Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1-3), 650-659 (2015) · Zbl 1333.34007 · doi:10.1016/j.cnsns.2014.10.008
[68] Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3-4), 209-217 (2010) · Zbl 1223.93006 · doi:10.1016/j.sysconle.2010.01.006
[69] Gong, P., Lan, W.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92-99 (2018) · Zbl 1388.93052 · doi:10.1016/j.automatica.2018.02.010
[70] Gong, P., Lan, W.: Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2801345 · Zbl 1388.93052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.