×

Neat submodules over commutative rings. (English) Zbl 1439.18014

The authors prove that for a commutative ring \(R\), every maximal ideal of \(R\) is finitely generated and projective if and only if \(R\) has projective socle and neatness and \(P\)-purity coincide. For a commutative ring \(R\), they prove that neatness and \(P\)-purity coincide if and only if every maximal ideal of \(R\) is finitely generated and the unique maximal ideal \(P_P\) of the local ring \(R_P\) is a principal ideal for every maximal ideal \(P\) of \(R\).
There are four sections in this article. In section \(3\), the authors prove in Theorem \(3.10\) that if \(R\) is a commutative ring such that every maximal ideal of R is finitely generated and projective, then an Auslander-Bridger transpose \(Tr(s)\) is projectively equivalent to \(S\) for every simple \(R\)-module \(S\) and \(_R \mathcal{N}eat = _R \mathcal{P}Pure.\)
For proving this result, they establish many results in section \(3\) as follows: for a commutative local ring \(R\) with a unique maximal ideal \(m\), they show in Corollary \(3.5\) that \(_R \mathcal{N}eat = _R \mathcal{P}Pure,\) if and only if \(m\) is a principal ideal. If the unique maximal ideal \(m\) of a commutative local ring \(R\) is projective, then it is necessarily a principal ideal. Over any commutative ring, in Lemma \(3.6\), they analyse how neatness and \(P\)-purity behave under localization and obtain the main result in Theorem \(3.7:\) for a commutative ring \(R\), \(_R \mathcal{N}eat = _R \mathcal{P}Pure,\) if and only if every maximal ideal \(m\) of \(R\) is finitely generated and the maximal ideal \(m\) of the local ring \(R_m\) is a principal ideal. In the last Section 4, they prove that all maximal ideals of a commutative ring \(R\) are finitely generated and projective if and only if \(R\) has projective socle and \(_R \mathcal{N}eat = _R \mathcal{P}Pure.\)
In general, this is an interesting aticle which paves way to many possible research in this field which makes this article worth reading.

MSC:

18G25 Relative homological algebra, projective classes (category-theoretic aspects)
13D05 Homological dimension and commutative rings
16D40 Free, projective, and flat modules and ideals in associative algebras
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
Full Text: DOI

References:

[1] Alizade, R.; Mermut, E., Proper classes related with complements and supplements, Palest. J. Math., 4, Special Issue, 471-489 (2015) · Zbl 1375.16002
[2] Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules (1992), New-York, NY: Springer, New-York, NY · Zbl 0765.16001
[3] Angeleri Hügel, L.; Bazzoni, S., TTF triples in functor categories, Appl. Categor. Struct, 18, 6, 585-613 (2010) · Zbl 1245.16020 · doi:10.1007/s10485-009-9188-1
[4] Angeleri Hügel, L.; Sánchez, J., Tilting modules arising from ring epimorphisms, Algebr. Represent. Theor., 14, 2, 217-246 (2011) · Zbl 1260.16009 · doi:10.1007/s10468-009-9186-x
[5] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Reading, MA: Addison-Wesley Publishing Co, Reading, MA · Zbl 0175.03601
[6] Auslander, M.; Bridger, M., Stable module theory, Memoirs Am. Math. Soc., 0, 94, 0 (1969) · Zbl 0204.36402 · doi:10.1090/memo/0094
[7] Auslander, M.; Reiten, I.; Smalø, S. O., Representation Theory of Artin Algebras, Volume 36 of Cambridge Studies in Advanced Mathematics (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0834.16001
[8] Büyükaşık, E.; Mermut, E.; Özdemir, S., Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova, 124, 157-177 (2010) · Zbl 1246.16007 · doi:10.4171/RSMUP/124-10
[9] Crivei, S., Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc., 89, 2, 343-352 (2014) · Zbl 1288.13008 · doi:10.1017/S0004972713000622
[10] Eisenbud, D., Commutative Algebra, Volume 150 of Graduate Texts in Mathematics (1995), New York, NY: Springer-Verlag, New York, NY · Zbl 0819.13001
[11] Fuchs, L., On quasi-injective modules, Ann. Scuola Norm. Sup. Pisa, 23, 541-546 (1969) · Zbl 0191.03803
[12] Fuchs, L., Neat submodules over integral domains, Period. Math. Hung., 64, 2, 131-143 (2012) · Zbl 1289.13011 · doi:10.1007/s10998-012-7509-x
[13] Fuchs, L.; Salce, L., Modules over Non-Noetherian Domains, Volume 84 of Mathematical Surveys and Monographs. (2001), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0973.13001
[14] Gabelli, S., Locally principal ideals and finite character, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56, 104, 99-108 (2013) · Zbl 1289.13003
[15] Gilmer, R., Multiplicative Ideal Theory, Volume 90 of Queen’s Papers in Pure and Applied Mathematics. (1992), Kingston, ON: Queen’s University, Kingston, ON · Zbl 0804.13001
[16] Hilton, P. J.; Stammbach, U., A Course in Homological Algebra, Volume 4 of Graduate Texts in Mathematics (1997), New York, NY: Springer-Verlag, New York, NY · Zbl 0863.18001
[17] Honda, K., Realism in the theory of abelian groups I, Comment. Math. Univ. St. Paul., 5, 37-75 (1956) · Zbl 0071.02404
[18] Kemper, G., A Course in Commutative Algebra, Volume 256 of Graduate Texts in Mathematics (2011), Heidelberg: Springer, Heidelberg · Zbl 1210.13001
[19] Kunz, E.; Ackerman, Michael; Mumford, David, Introduction to Commutative Algebra and Algebraic Geometry (1985), Boston, MA: Birkhäuser Boston, Inc, Boston, MA · Zbl 0563.13001
[20] Lam, T. Y., Lectures on Modules and Rings, Volume 189 of Graduate Texts in Mathematics (1999), New York, NY: Springer-Verlag, New York, NY · Zbl 0911.16001
[21] Maşek, V., Gorenstein dimension and torsion of modules over commutative noetherian rings, Commun. Algebra, 28, 12, 5783-5811 (2000) · Zbl 1002.13005
[22] Mermut, E.; Santa-Clara, C.; Smith, P. F., Injectivity relative to closed submodules, J. Algebra, 321, 2, 548-557 (2009) · Zbl 1175.16006 · doi:10.1016/j.jalgebra.2008.11.004
[23] Nicholson, W. K.; Watters, J. F., Rings with projective socle, Proc. Am. Math. Soc., 102, 3, 443-450 (1988) · Zbl 0657.16015 · doi:10.2307/2047200
[24] Northcott, D. G., An Introduction to Homological Algebra (1960), New York: Cambridge University Press, New York · Zbl 0116.01401
[25] Nunke, R. J., Modules of extensions over dedekind rings, Illinois J. Math., 3, 2, 222-241 (1959) · Zbl 0087.26603 · doi:10.1215/ijm/1255455124
[26] Passman, D. S., A Course in Ring Theory. The Wadsworth & Brooks/Cole Mathematics Series (1991), Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA · Zbl 0783.16001
[27] Sklyarenko, E. G., Relative homological algebra in categories of modules, Russ. Math. Surv, 33, 3, 97-137 (1978) · Zbl 0449.16028 · doi:10.1070/RM1978v033n03ABEH002466
[28] Stenström, B. T., Pure submodules, Ark. Mat, 7, 2, 159-171 (1967) · Zbl 0153.34302 · doi:10.1007/BF02591032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.