×

Affine threefolds with \(\mathbb{A}^{2}\)-fibrations. (English) Zbl 1439.14177

Summary: An affine threefold containing an \(\mathbb{A}^{2}\)-cylinder is studied. The existence of \(\mathbb{A}^{2}\)-cylinders is almost equivalent to the existence of mutually commuting, independent \(G_a\)-actions \(\sigma_{1}, \sigma_{2}\). A typical example of such affine threefolds is a hypersurface \(x^m y = f(x, z, t)\), and we generalize such a hypersurface to define an affine pseudo-3-space. After I. Hedén [“Russell’s hypersurface from a geometric point of view”, Preprint, arXiv:1405.4561], we observe also a \(G_a\)-action on the hypersurface \(x^{m}y = f(x, z, t)\) with \(m\geq 2\).

MSC:

14R05 Classification of affine varieties
14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
14R25 Affine fibrations
Full Text: DOI

References:

[1] H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 463-482. · Zbl 0602.14047 · doi:10.1090/S0002-9947-1985-0808732-4
[2] S. M. Bhatwadekar, D. Daigle, On finite generation of kernels of locally nilpotent R-derivations of R[X, Y, Z], J. Algebra 322 (2009), 2915-2926. · Zbl 1234.13027 · doi:10.1016/j.jalgebra.2008.05.003
[3] A. D. R. Choudary, A. Dimca, Complex hypersurfaces diffeomorphic to affine spaces, Kodai Math. J. 17 (1994), no. 2, 171-178. · Zbl 0820.14030 · doi:10.2996/kmj/1138039958
[4] D. Daigle, G. Freudenburg, A note on triangular derivations of k[X1, X2, X3, X4], Proc. Amer. Math. Soc. 129 (2000), 657-662. · Zbl 0955.13011 · doi:10.1090/S0002-9939-00-05558-1
[5] D. Daigle, R. Kolhatkar, Complete intersection surfaces with trivial Makar-Limanov invariant, J. Algebra 350 (2012), 1-35. · Zbl 1300.14061 · doi:10.1016/j.jalgebra.2011.09.032
[6] H. Derksen, A. van den Essen, D. R. Finston, S. Maubach, Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208. · Zbl 1242.14055 · doi:10.1016/j.jalgebra.2011.03.027
[7] N. Gupta, On the cancellation problem for the affine spaceA \[\mathbb{A} 3\] in characteristic p, Invent. Math. 195 (2014), 279-288. · Zbl 1309.14050 · doi:10.1007/s00222-013-0455-2
[8] N. Gupta, On Zariski’s cancellation problem in positive characteristic, Adv. Math. 264 (2014), 296-307. · Zbl 1325.14078 · doi:10.1016/j.aim.2014.07.012
[9] R. V. Gurjar, K. Masuda, M. Miyanishi, A \[\mathbb{A} 1\]-fibrations on affine threefolds, J. Pure and Applied Algebra 216 (2012), 296-313. · Zbl 1237.14073 · doi:10.1016/j.jpaa.2011.06.013
[10] R. V. Gurjar, K. Masuda, M. Miyanishi, Deformations ofA \[\mathbb{A} 1\]-fibrations, in: Groups of Automorphisms in Birational and Affine Geometry, I. Cheltsov et al., eds., Springer Proceedings in Mathematics & Statistics 79, Springer, Cham, 2012, pp. 327-361. · Zbl 1326.14146
[11] I. Hedén, Russell’s hypersurface from a geometric point of view, arXiv:1405. 4561v1 (2014). · Zbl 1453.14146
[12] M. El Kahoui, M. Ouali, The cancellation problem over Noetherian one-dimensional domains, Kyoto J. Math. 54 (2014), no. 1, 157-165. · Zbl 1309.14054 · doi:10.1215/21562261-2400301
[13] Kaliman, S.; Makar-Limanov, L.; Hibi, T. (ed.), AK-invariant of affine domains, 231-255 (2007), Osaka · Zbl 1127.14053
[14] Sh. Kaliman, M. Zaidenberg, Families of affine planes: the existence of a cylinder, Michigan Math. J. 49 (2001), no. 2, 353-367. · Zbl 1071.14522 · doi:10.1307/mmj/1008719778
[15] Sh. Kaliman, M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), 53-95. · Zbl 0956.14041 · doi:10.1007/BF01236662
[16] Sh. Kaliman, M. Zaidenberg, Miyanishi’s characterization of the affine 3-space does not hold in higher dimensions, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1649-1669. · Zbl 0971.14044 · doi:10.5802/aif.1803
[17] A. Maharana, A Study of Cyclic Multiple Planes, PhD thesis, 2010. · Zbl 1234.13027
[18] L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990), 250-256. · Zbl 0711.14022 · doi:10.1007/BF02937308
[19] L. Makar-Limanov, Again x+x2y+z2+t3 = 0, in: Affine Algebraic Geometry, J. Gutierrez et al., eds., Contemp. Math. 369, Amer. Math. Soc., RI, 2005, pp. 177-182. · Zbl 1075.14056
[20] K. Masuda, Characterizations of hypersurfaces of a Danielewski type, J. Pure Appl. Algebra 218 (2014), no. 4, 624-633. · Zbl 1291.14089 · doi:10.1016/j.jpaa.2013.08.002
[21] S. Maubach, The commuting derivations conjecture, J. Pure Appl. Algebra 179 (2003), no. 1-2, 159-168. · Zbl 1052.13012 · doi:10.1016/S0022-4049(02)00198-6
[22] M. Miyanishi, Algebraic characterization of the affine 3-space, in: Proc. of Algebraic Geometry Seminar, Singapore, 1987, pp. 53-67. · Zbl 0956.14041
[23] M. Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), 1469-1486. · Zbl 0595.14025 · doi:10.2307/2374401
[24] M. Miyanishi, Normal affine subalgebras of a polynomial ring, in: Algebraic and Topological Theories, M. Nagata, ed., Kinokuniya, 1986, pp. 37-51. · Zbl 0800.14018
[25] M. Miyanishi, Lectures on Curves on Rational and Unirational Surfaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 60, Narosa, 1978. · Zbl 0425.14008
[26] M. Nagata, A remark on the unique factorization domain, J. Math. Soc. Japan, 9 (1957), 143-145. · Zbl 0079.05405 · doi:10.2969/jmsj/00910143
[27] M. Nori, Zariski’s conjecture and related problems, Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), no. 2, 305-344. · Zbl 0527.14016
[28] A. Sathaye, Polynomial ring in two variables over a DVR: a criterion, Invent. Math. 74 (1983), no. 1, 159-168. · Zbl 0538.13006 · doi:10.1007/BF01388536
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.