×

Normality of algebras over commutative rings and the Teichmüller class. I: The absolute case. (English) Zbl 1439.13025

Let \(S\) be a commutative ring with a unit, \(U(S)\) the group of invertible elements of \(S\), \(Q\) a (possibly, infinite) group and \(k _ {Q} : Q \to \mathrm{Aut}(S)\) an action of \(Q\) on \(S\) (not necessarily injective) by ring automorphisms. Suppose that \(A\) is a central \(S\)-algebra, denote by Inn\((A)\) the group of its inner automorphism, and let Out\((A) = \mathrm{Aut}(A)/\mathrm{Inn}(A)\) be the group of outer automorphisms of \(A\). By a normal\(Q\)-algebra, we mean a pair \((A, \sigma )\), where \(\sigma \) is a homomorphism of \(Q\) into Out\((A)\) that lifts the action \(k _ Q\) of \(Q\) on \(A\) in the sense that the composite of \(\sigma \) with the obvious map Out\((A) \to\mathrm{Aut}(S)\) coincides with \(k _ Q\). When \(S\) is a field, \(A\) is finite-dimensional and simple, and \(Q\) is a finite subgroup of Aut\((S)\), the property of being \(Q\)-normal means that each member of \(Q\) can be extended to an automorphism of \(A\); this is the same as \(Q\)-normality in the sense of S. Eilenberg and S. MacLane [Trans. Am. Math. Soc. 64, 1–20 (1948; Zbl 0031.34301)], since the restriction mapping Out\((A) \to \mathrm{Aut}(S)\) is injective, by the Skolem-Noether theorem. This special case has been studied by O. Teichmüller [Deutsche Math. 5, 138–149 (1940; Zbl 0023.19805)]; following him, one can associate with any \(Q\)-normal central simple \(S\)-algebra a \(3\)-cocycle of \(Q\) with values in \(U(S)\), considering \(S\) to be a \(Q\)-module with respect to the structure coming from the action of \(Q\) on \(S\).
The paper under review presents the first part of a research extending the results of Teichmüller, Eilenberg-MacLane, and others, to the general case of a commutative unitary ring \(S\) and an action \(k _ Q: Q \to \mathrm{Aut}(S)\) of \(Q\) on \(S\) by ring automorphisms (for the 2nd and 3rd part of this research, see [th author, J. Homotopy Relat. Struct. 13, No. 1, 71–125 (2018; Zbl 1439.13026); ibid. 13, No. 1, 127–142 (2018; Zbl 1428.13011)]). As a first step, the author associates with any \(Q\)-normal \(S\)-algebra \((A, \sigma )\) a crossed \(2\)-fold extension \(e _ {(A, \sigma )}\) (called the Teichmüller complex of \((A, \sigma )\)) starting at \(U(S)\) and ending at \(Q\); this complex, in turn, represents a class, the Teichmüller class, in the 3rd cohomology group \(H^3(Q, U(S))\) of \(Q\) with coefficients in \(U(S)\). Exploiting the description of the Teichmüller class in terms of the Teichmüller complex, he shows how the classical results related to the Teichmüller cocycle for finite-dimensional normal central simple algebras extend to general \(Q\)-normal algebras. Two of the main results of the paper give necessary and sufficient conditions for a \(Q\)-normal \(S\)-algebra \((A, \sigma )\) to have a zero Teichmüller class. When \(S/R\) is a Galois extension of commutative rings with Galois group \(Q\), where \(R = S^Q\), they show that a central \(S\)-algebra \(A\) with a \(Q\)-normal structure \(\sigma \) has a zero Teichmüller class if and only if \(A\) admits an embedding into a central \(R\)-algebra \(C\) so that (i) the centralizer of \(S\) in \(C\) equals \(A\), and (ii) each automorphism \(k _ Q(q)\) of \(S\), as \(q\) ranges over \(Q\), extends to an inner automorphism \(\alpha \) of \(C\) which (in view of (i)) maps \(A\) to itself in such a way that the class of \(\alpha \vert A\) in Out\((A)\) coincides with \(\sigma (q)\); moreover, if \(A\) is an Azumaya \(S\)-algebra, then \(C\) may be taken to be an Azumaya \(R\)-algebra. The results of the reviewed paper also concern the following major topics: normal algebras and their Teichmüller complexes; crossed products with normal algebras (two constructions and a proof of their equivalence); induced normal and equivariant structures; crossed Brauer group, generalized crossed Brauer group and Picard group; the equivariant Brauer group; the seven term exact sequence. The bibliography of the paper contains 47 items.

MSC:

13B05 Galois theory and commutative ring extensions
12G05 Galois cohomology
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16K50 Brauer groups (algebraic aspects)
16S35 Twisted and skew group rings, crossed products
20J06 Cohomology of groups
Full Text: DOI

References:

[1] Auslander, B.: The Brauer group of a ringed space. J. Algebra 4, 220-273 (1966) · Zbl 0144.03401 · doi:10.1016/0021-8693(66)90040-8
[2] Auslander, M., Buchsbaum, D.A.: On ramification theory in noetherian rings. Am. J. Math. 81, 749-765 (1959) · Zbl 0093.04104 · doi:10.2307/2372926
[3] Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Am. Math. Soc. 97, 367-409 (1960) · Zbl 0100.26304 · doi:10.1090/S0002-9947-1960-0121392-6
[4] Auslander, M., Goldman, O.: Maximal orders. Trans. Am. Math. Soc. 97, 1-24 (1960) · Zbl 0117.02506 · doi:10.1090/S0002-9947-1960-0117252-7
[5] Bass, H.: Algebraic \[KK\]-theory. W. A. Benjamin Inc., New York (1968) · Zbl 0174.30302
[6] Bourbaki, N.: Éléments de mathématique. Fascicule XXVII. Algèbre commutative. Chapitre 1: Modules plats. Chapitre 2: Localisation. Actualités Scientifiques et Industrielles, No. 1290, Herman, Paris (1961) · Zbl 0108.04002
[7] Brown, R., Higgins, P.J., Sivera, R.: Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids.With contributions by Christopher D.Wensley and Sergei V. Soloviev. EMS Tracts in Mathematics, vol. 15. European Mathematical Society (EMS), Zürich (2011). doi:10.4171/083 · Zbl 1237.55001
[8] Cegarra, A.M., Garzón, A.R., Grandjean, A.R.: Graded extensions of categories. Category theory and its applications (Montreal, QC, 1997). J. Pure Appl. Algebra 154(1-3), 117-141 (2000). doi:10.1016/S0022-4049(99)00059-6 · Zbl 0965.18006
[9] Cegarra, A.M., Garzón, A.R., Ortega, J.A.: Graded extensions of monoidal categories. J. Algebra 241(2), 620-657 (2001). doi:10.1006/jabr.2001.8769 · Zbl 0988.18004 · doi:10.1006/jabr.2001.8769
[10] Chase, S.U., Sweedler, M.E.: Hopf Algebras and Galois Theory. Lecture Notes in Mathematics, vol. 97. Springer, Berlin (1969) · Zbl 0197.01403 · doi:10.1007/BFb0101433
[11] Chase, S.U., Harrison, D.K., Rosenberg, A.: Galois Theory and Galois Cohomology of Commutative Rings. Mem. Amer. Math. Soc. 52, 15-33 (1965) · Zbl 0143.05902
[12] Childs, L.N.: On normal Azumaya algebras and the Teichmüller cocycle map. J. Algebra 23, 1-17 (1972) · Zbl 0243.16003 · doi:10.1016/0021-8693(72)90042-7
[13] Deuring, M.: Einbettung von Algebren in Algebren mit kleinerem Zentrum. J. Reine Angew. Math. 175, 124-128 (1936). doi:10.1515/crll.1936.175.124 · JFM 62.0107.02 · doi:10.1515/crll.1936.175.124
[14] Eilenberg, S., MacLane, S.: Cohomology and Galois theory. I. Normality of algebras and Teichmüller’s cocycle. Trans. Am. Math. Soc. 64, 1-20 (1948) · Zbl 0031.34301
[15] Fröhlich, A., Wall, C.: Generalisations of the Brauer group. I (1971) (Preprint) · Zbl 0050.02104
[16] Fröhlich, A., Wall, C.T.C.: Equivariant Brauergroups in algebraic number theory. In: Colloque de Théorie des Nombres (Univ. de Bordeaux, Bordeaux, 1969). Soc. Math. France, Paris, pp. 91-96. Bull. Soc. Math. France, Mém. No. 25 (1971) · Zbl 0218.13002
[17] Fröhlich, A., Wall, C.T.C.: Graded monoidal categories. Compos. Math. 28, 229-285 (1974) · Zbl 0327.18007
[18] Fröhlich, A., Wall, C.T.C.: Equivariant Brauer groups. In: Quadratic Forms and Their Applications (Dublin, 1999). Contemp. Math., vol. 272. Amer. Math. Soc., Providence, RI, pp 57-71 (2000). doi:10.1090/conm/272/04397 · Zbl 0980.16015
[19] Hochschild, G., Serre, J.P.: Cohomology of group extensions. Trans. Am. Math. Soc. 74, 110-134 (1953) · Zbl 0050.02104 · doi:10.1090/S0002-9947-1953-0052438-8
[20] Holt, D.F.: An interpretation of the cohomology groups \[H^n(G,\, M)\] Hn(G,M). J. Algebra 60(2), 307-318 (1979). doi:10.1016/0021-8693(79)90084-X · Zbl 0699.20040 · doi:10.1016/0021-8693(79)90084-X
[21] Huebschmann, J.: Crossed \[n\] n-fold extensions of groups and cohomology. Comment. Math. Helv. 55(2), 302-313 (1980) · Zbl 0443.18019 · doi:10.1007/BF02566688
[22] Huebschmann, J.: Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence. J. Algebra 72(2), 296-334 (1981). doi:10.1016/0021-8693(81)90296-9 · Zbl 0443.18018 · doi:10.1016/0021-8693(81)90296-9
[23] Huebschmann, J.: Group extensions, crossed pairs and an eight term exact sequence. J. Reine Angew. Math. 321, 150-172 (1981). doi:10.1515/crll.1981.321.150 · Zbl 0441.20033 · doi:10.1515/crll.1981.321.150
[24] Huebschmann, J.: Normality of algebras over commutative rings and the Teichmüller class. II. Crossed pairs and the relative theory. J. Homotopy Relat. Struct. (2017). doi:10.1007/s40062-017-0174-2 · Zbl 1439.13026
[25] Huebschmann, J.: Normality of algebras over commutative rings and the Teichmüller class. III. Examples. J. Homotopy Relat. Struct. (2017). doi:10.1007/s40062-017-0175-1 · Zbl 1439.13025
[26] Kanzaki, T.: On commutor rings and Galois theory of separable algebras. Osaka J. Math. 1, 103-115 (1964) (correction, ibid 1:253 (1964)) · Zbl 0144.02601
[27] Knus, M.A.: A Teichmüller cocycle for finite extensions ETH-preprint (1975) · Zbl 0327.18007
[28] MacLane, S.: A nonassociative method for associative algebras. Bull. Am. Math. Soc. 54, 897-902 (1948) · Zbl 0031.34302 · doi:10.1090/S0002-9904-1948-09092-9
[29] MacLane, S.: Symmetry of algebras over a number field. Bull. Am. Math. Soc. 54, 328-333 (1948) · Zbl 0032.10801 · doi:10.1090/S0002-9904-1948-08996-0
[30] MacLane, S.: Homology, 1st edn. die Grundlehren der mathematischen Wissenschaften, Band 114. Springer, Berlin (1967) · Zbl 0149.26203
[31] MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, New York (1971) · Zbl 0705.18001
[32] MacLane, S.: Historical note. J. Algebra 60(2), 319-320 (1979) (appendix to [20]) · Zbl 0053.01303
[33] Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, vol. 82. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1993) · Zbl 0793.16029
[34] Nakayama, T.: On a \[33\]-cohomology class in class field theory and the relationship of algebra- and idèle-classes. Ann. Math. (2) 57, 1-14 (1953) · Zbl 0053.35601 · doi:10.2307/1969723
[35] Neukirch, J.: Class Field Theory. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35437-3 (the Bonn lectures, edited and with a foreword by Alexander Schmidt, Translated from the 1967 German original by F. Lemmermeyer and W. Snyder, Language editor: A. Rosenschon) · Zbl 0587.12001
[36] Oberst, U.: Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen. J. Algebra 44(2), 503-538 (1977) · Zbl 0345.14016 · doi:10.1016/0021-8693(77)90198-3
[37] Pareigis, B.: Über normale, zentrale, separable Algebren und Amitsur-Kohomologie. Math. Ann. 154, 330-340 (1964) · Zbl 0118.04204 · doi:10.1007/BF01362568
[38] Rosenberg, A., Zelinsky, D.: Automorphisms of separable algebras. Pac. J. Math. 11, 1109-1117 (1961) · Zbl 0116.02501 · doi:10.2140/pjm.1961.11.1109
[39] Schneider, H.J.: Principal homogeneous spaces for arbitrary Hopf algebras. Isr. J. Math. 72(1-2), 167-195 (1990). doi:10.1007/BF02764619 · Zbl 0731.16027 · doi:10.1007/BF02764619
[40] Tate, J.T.: Global class field theory. In: Cassels, J.W.S., Fröheich, A. (eds.) Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp. 162-203. Thompson, Washington, DC (1967) · Zbl 1179.11041
[41] Taylor, R.L.: Compound group extensions. I. Continuations of normal homomorphisms. Trans. Am. Math. Soc. 75, 106-135 (1953) · Zbl 0053.01303 · doi:10.1090/S0002-9947-1953-0059911-7
[42] Teichmüller, O.: Über die sogenannte nichtkommutative Galoissche Theorie und die Relation \[\xi_{\lambda,\mu,\nu }\xi_{\lambda,\mu \nu,\pi }\xi^{\lambda }_{\mu,\nu,\pi }=\xi_{\lambda,\mu,\nu \pi }\xi_{\lambda,\mu,\nu,\pi }\] ξλ,μ,νξλ,μν,πξμ,ν,πλ=ξλ,μ,νπξλ,μ,ν,π. Deutsche Math 5, 138-149 (1940) · JFM 66.1208.04
[43] Ulbrich, K.H.: On the Teichmüller cocycle map. J. Algebra 124(2), 461-471 (1989). doi:10.1016/0021-8693(89)90143-9 · Zbl 0694.13004 · doi:10.1016/0021-8693(89)90143-9
[44] Ulbrich, K.H.: On the Teichmüller cocycle map and a theorem of Eilenberg-Mac Lane. Bull. Sci. Math. 118(3), 307-324 (1994) · Zbl 0810.18009
[45] Villamayor, O.E., Zelinsky, D.: Brauer groups and Amitsur cohomology for general commutative ring extensions. J. Pure Appl. Algebra 10(1), 19-55 (1977/78) · Zbl 0383.13002
[46] Whitehead, J.H.C.: Combinatorial homotopy. II. Bull. Am. Math. Soc. 55, 453-496 (1949) · Zbl 0040.38801 · doi:10.1090/S0002-9904-1949-09213-3
[47] Zelinsky, D.: Long exact sequences and the Brauer group. In: Zelinski, D. (ed.) Brauer groups (Proc. Conf., Northwestern Univ., Evanston, Ill., 1975). Lecture Notes in Math., vol. 549, pp. 63-70. Springer, Berlin (1976) · Zbl 0031.34301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.