×

Some new identities involving Sheffer-Appell polynomial sequences via matrix approach. (English) Zbl 1439.11086

Summary: In this contribution, some new identities involving Sheffer-Appell polynomial sequences using generalized Pascal functional and Wronskian matrices are deduced. As a direct application of them, identities involving families of polynomials as Euler, Bernoulli, Miller-Lee and Apostol-Euler polynomials, among others, are given.

MSC:

11B83 Special sequences and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Aceto, L., Cação, I.: A matrix approach to Sheffer polynomials. J. Math. Anal. Appl. 446, 87-100 (2017) · Zbl 1351.11020 · doi:10.1016/j.jmaa.2016.08.038
[2] Andrews, L.C.: Special Functions for Engineers and Applied Mathematicians. Macmillan Publishing Company, New York (1985)
[3] Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001
[4] Apostol, T.M.: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951) · Zbl 0043.07103 · doi:10.2140/pjm.1951.1.161
[5] Araci, S.: Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus. Appl. Math. Comput. 233, 599-607 (2014) · Zbl 1334.05013
[6] Costabile, F.A., Longo, E.: A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 234(5), 1528-1542 (2010) · Zbl 1200.33020 · doi:10.1016/j.cam.2010.02.033
[7] Costabile, F.A., Longo, E.: An algebraic approach to Sheffer polynomial sequences. Integral Transforms Spec. Funct. 25(4), 295-311 (2014) · Zbl 1345.11020 · doi:10.1080/10652469.2013.842234
[8] Dattoli, G., Migliorati, M., Srivastava, H.M.: Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials. Math. Comput. Model. 45, 1033-1041 (2007) · Zbl 1117.33008 · doi:10.1016/j.mcm.2006.08.010
[9] Dere, R., Simsek, Y., Srivastava, H.M.: A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra. J. Number Theory 133, 3245-3263 (2013) · Zbl 1295.11023 · doi:10.1016/j.jnt.2013.03.004
[10] di Bucchianico, A., Loeb, D.: A selected survey of umbral calculus. Electron. J. Combin. 2, 1-34 (2000) · Zbl 0851.05012
[11] Garza, L.G., Garza, L.E., Marcellán, F., Pinzón-Cortés, N.C.: A matrix approach for the semiclassical and coherent orthogonal polynomials. Appl. Math. Comput. 256, 459-471 (2015) · Zbl 1338.42033
[12] He, Y., Araci, S., Srivastava, H.M., Acikgoz, M.: Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials. Appl. Math. Comput. 262, 31-41 (2015) · Zbl 1410.11016
[13] He, M.-X., Ricci, P.E.: Differential equation of Appell polynomials via the factorization method. J. Comput. Appl. Math. 139, 231-237 (2002) · Zbl 0994.33008 · doi:10.1016/S0377-0427(01)00423-X
[14] Khan, S., Riyasat, M.: A determinantal approach to Sheffer-Appell polynomials via monomiality principle. J. Math. Anal. Appl. 421, 806-829 (2015) · Zbl 1310.33012 · doi:10.1016/j.jmaa.2014.07.044
[15] Kim, D.S., Kim, T.: A matrix approach to some identites involving Sheffer polynomial sequences. Appl. Math. Comput. 253, 83-101 (2015) · Zbl 1338.33025
[16] Lehmer, D.H.: A new approach to Bernoulli polynomials. Am. Math. Mon. 95, 905-911 (1988) · Zbl 0663.10009 · doi:10.1080/00029890.1988.11972114
[17] Luo, Q.M.: Apostol-Euler polynomials of higher order and the Gaussian hypergeometric function. Taiwan. J. Math. 10(4), 917-925 (2006) · Zbl 1189.11011 · doi:10.11650/twjm/1500403883
[18] Luo, Q.M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308(1), 290-302 (2005) · Zbl 1076.33006 · doi:10.1016/j.jmaa.2005.01.020
[19] McBride, E.B.: Obtaining Generating Functions. Springer, Berlin (1971) · Zbl 0215.43403 · doi:10.1007/978-3-642-87682-0
[20] Pintér, Á., Srivastava, H.M.: Addition theorems for the Appell polynomials and the associated classes of polynomial expansions. Aequ. Math. 85, 483-495 (2013) · Zbl 1288.11022 · doi:10.1007/s00010-012-0148-8
[21] Rainville E.D.: Special Functions, The Macmillan Co. Inc., New York (1960). Reprinted by Chelsea Publ. Co. Bronx, New York, 1971 · Zbl 0092.06503
[22] Roman, S.: The theory of the umbral calculus. I. J. Math. Anal. Appl. 87, 58-115 (1982) · Zbl 0499.05009 · doi:10.1016/0022-247X(82)90154-8
[23] Roman, S.: The Umbral Calculus. Academic Press, New York (1984) · Zbl 0536.33001
[24] Roman, S., Rota, G.-C.: The umbral calculus. Adv. Math. 27, 95-188 (1978) · Zbl 0375.05007 · doi:10.1016/0001-8708(78)90087-7
[25] Rosen, K.: Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000) · Zbl 1044.00002
[26] Sheffer, I.M.: A differential equation for Appell polynomials. Bull. Am. Math. Soc. 41, 914-923 (1935) · JFM 61.0379.01 · doi:10.1090/S0002-9904-1935-06218-4
[27] Sheffer, I.M.: Some properties of polynomial sets of type zero. Duke Math. J. 5, 590-622 (1939) · JFM 65.0366.01 · doi:10.1215/S0012-7094-39-00549-1
[28] Srivastava, H.M.: Some characterizations of Appell and \(q\)-Appell polynomials. Ann. Mat. Pura Appl. 130(Ser. 4), 321-329 (1982) · Zbl 0468.33007 · doi:10.1007/BF01761501
[29] Srivastava, H.M., Nisar, K.S., Khan, M.A.: Some umbral calculus presentations of the Chan-Chyan-Srivastava polynomials and the Erkuş-Srivastava polynomials. Proyecc. J. Math. 33, 77-90 (2014) · Zbl 1301.33016
[30] Yang, Y.-Z., Micek, C.: Generalized Pascal functional matrix and its applications. Linear Algebra Appl. 423, 230-245 (2007) · Zbl 1115.15012 · doi:10.1016/j.laa.2006.12.014
[31] Yang, Y.-Z., Youn, H.-Y.: Appell polynomial sequences: a linear algebra approach. J. Algebra Number Theory Appl. 13, 65-98 (2009) · Zbl 1177.33025
[32] Youn, H.-Y., Yang, Y.-Z.: Differential equation and recursive formulas of Sheffer polynomial sequences. ISRN Discrete Math. 2011, 1-16 (2011). Article ID 476462 · Zbl 1237.33008 · doi:10.5402/2011/476462
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.