×

A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. (English) Zbl 1438.65060

Summary: Finding the maximum eigenvalue of a symmetric tensor is an important topic in tensor computation and numerical multilinear algebra. In this paper, we introduce a new class of structured tensors called \(W\)-tensors, which not only extends the well-studied nonnegative tensors by allowing negative entries but also covers several important tensors arising naturally from spectral hypergraph theory. We then show that finding the maximum \(H\)-eigenvalue of an even-order symmetric \(W\)-tensor is equivalent to solving a structured semidefinite program and hence can be validated in polynomial time. This yields a highly efficient semidefinite program algorithm for computing the maximum \(H\)-eigenvalue of \(W\)-tensors and is based on a new structured sums-of-squares decomposition result for a nonnegative polynomial induced by \(W\)-tensors. Numerical experiments illustrate that the proposed algorithm can successfully find the maximum \(H\)-eigenvalue of \(W\)-tensors with dimension up to 10,000, subject to machine precision. As applications, we provide a polynomial time algorithm for computing the maximum \(H\)-eigenvalues of large-size Laplacian tensors of hyperstars and hypertrees, where the algorithm can be up to 13 times faster than the state-of-the-art numerical method introduced by M. Ng, L. Qi, and G. Zhou in 2009 [SIAM J. Matrix Anal. Appl. 31(2009), No. 3, 1090–1099 (2010; Zbl 1197.65036)]. Finally, we also show that the proposed algorithm can be used to test the copositivity of a multivariate form associated with symmetric extended \(Z\)-tensors, whose order may be even or odd.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A69 Multilinear algebra, tensor calculus

Citations:

Zbl 1197.65036

Software:

SeDuMi; Matlab; YALMIP
Full Text: DOI

References:

[1] CooperJ, DutleA. Spectra of uniform hypergraphs. Linear Algebra Appl.2012;436(9):3268-3292. · Zbl 1238.05183
[2] DingW, QiL, WeiY. Fast Hankel tensor-vector product and its application to exponential data fitting. Numer Linear Algebra Appl.2015;22(5):814-832. · Zbl 1349.65070
[3] NgM, QiL, ZhouG. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl.2009;31(3):1090-1099. · Zbl 1197.65036
[4] QiL. H^+‐eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci.2014;12(6):1045-1064. · Zbl 1305.05134
[5] QiL. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput.2005;40(6):1302-1324. · Zbl 1125.15014
[6] ChenY, DaiY, HanD. Fiber orientation distribution estimation using a Peaceman-Rachford splitting method. SIAM J Imaging Sci.2016;9(2):573-604. · Zbl 1346.92038
[7] QiL, YuG, WuEX. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci.2010;3(3):416-433. · Zbl 1197.92032
[8] HuS, QiL, XieJ. The largest Laplacian and signless Laplacian H‐eigenvalues of a uniform hypergraph. Linear Algebra Appl.2015;469:1-27. · Zbl 1305.05129
[9] DuchenneO, BachF, KweonI, PonceJ. A tensor‐based algorithm for high‐order graph matching. IEEE Trans Pattern Anal Mach Intell.2011;33(12):2383-2395.
[10] CartwrightD, SturmfelsB. The number of eigenvalues of a tensor. Linear Algebra Appl.2013;438(2):942-952. · Zbl 1277.15007
[11] HanL. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer Algebra Control Optim.2013;3(3):583-599. · Zbl 1271.65064
[12] HaoC, CuiC, DaiY. A sequential subspace projection method for extreme Z‐eigenvalues of supersymmetric tensors. Numer Linear Algebra Appl.2015;22(2):283-298. · Zbl 1363.65063
[13] HaoC, CuiC, DaiY. A feasible trust‐region method for calculating extreme Z‐eigenvalues of symmetric tensors. Pac J Optim.2015;11(2):291-307. · Zbl 1325.65052
[14] HuS, HuangZ, QiL. Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method. Numer Linear Algebra Appl.2013;20(6):972-984. · Zbl 1313.90173
[15] HuS, LiG, QiL, SongY. Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming. J Optim Theory Appl.2013;158(3):717-738. · Zbl 1274.90258
[16] KoldaTG, MayoJR. An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J Matrix Anal Appl.2014;35(4):1563-1581. · Zbl 1318.65019
[17] NiQ, QiL. A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J Global Optim.2015;61(4):627-641. · Zbl 1342.90150
[18] CuiC, DaiY, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl.2014;35(4):1582-1601. · Zbl 1312.65053
[19] HillarCJ, LimL. Most tensor problems are NP‐hard. J ACM. 2013;60(6):Article 45(1-39). · Zbl 1281.68126
[20] ChenY, QiL, WangQ. Computing extreme eigenvalues of large scale Hankel tensors. J Sci Comput.2016;68(2):716-738. · Zbl 1377.65046
[21] ChangK, QiL, ZhangT. A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl.2013;20(6):891-912. · Zbl 1313.15015
[22] LiG, QiL, YuG. Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl.2013;438(2):813-833. · Zbl 1260.15010
[23] LiuY, ZhouG, IbrahimNF. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J Comput Appl Math.2010;235(1):286-292. · Zbl 1201.65055
[24] ZhouG, QiL, WuS. On the largest eigenvalue of a symmetric nonnegative tensor. Numer Linear Algebra Appl.2013;20(6):913-928. · Zbl 1313.15020
[25] ZhangL, QiL. Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer Linear Algebra Appl.2012;19(5):830-841. · Zbl 1274.65129
[26] ZhangL, QiL, LuoZ, XuY. The dominant eigenvalue of an essentially nonnegative tensor. Numer Linear Algebra Appl.2013;20(6):929-941. · Zbl 1313.65084
[27] QiL. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl.2013;439(1):228-238. · Zbl 1281.15025
[28] KannikeK. Vacuum stability of a general scalar potential of a few fields. Eur Phys J C Part Fields. 2016;76(6):1-16.
[29] PeñaJ, VeraJC, ZuluagaLF. Completely positive reformulations for polynomial optimization. Math Program.2015;151(2):405-431. · Zbl 1328.90114
[30] SongY, QiL. Eigenvalue analysis of constrained minimization problem for homogeneous polynomial. J Global Optim.2016;64(3):563-575. · Zbl 1341.15009
[31] CheM, QiL, WeiY. Positive‐definite tensors to nonlinear complementarity problems. J Optim Theory Appl.2016;168(2):475-487. · Zbl 1334.90174
[32] SongY, QiL. Tensor complementarity problem and semi‐positive tensors. J Optim Theory Appl.2016;169(3):1069-1078. · Zbl 1349.90803
[33] SongY, QiL. Strictly semi‐positive tensors and the boundedness of tensor complementarity problems. Optim Lett.2016. https://doi.org/10.1007/s11590-016-1104-7 · Zbl 1454.90098 · doi:10.1007/s11590-016-1104-7
[34] ChenH, HuangZ, QiL. Copositivity detection of tensors: Theory and algorithm. J Optim Theory Appl.2017;174(3):746-761. · Zbl 1377.65060
[35] HuS, QiL, ShaoJ. Cored hypergraphs, power hypergraphs and their Laplacian H‐eigenvalues. Linear Algebra Appl.2013;439(10):2980-2998. · Zbl 1282.05171
[36] ChenH, LiG, QiL. SOS tensor decomposition: Theory and applications. Commun Math Sci.2016;14(8):2073-2100. · Zbl 1351.90148
[37] HuS, LiG, QiL. A tensor analogy of Yuan’s alternative theorem and polynomial optimization with sign structure. J Optim Theory Appl.2016;168(2):446-474. · Zbl 1338.90317
[38] LimL. Singular values and eigenvalues of tensors: A variational approach. Paper presented at: 2005 1st IEEE International Workshop on Computational Advances in Multi‐Sensor Adaptive Processing; Puerto Vallarta, Mexico; 2005. p. 129-132.
[39] FidalgoC, KovacecA. Positive semidefinite diagonal minus tail forms are sums of squares. Math Z.2011;269(3):629-645. · Zbl 1271.11045
[40] HenrionD, LasserreJ. Detecting global optimality and extracting solutions in GloptiPoly. Positive polynomials in control. Berlin Heidelberg:Springer-Verlag; 2005; p. 293-310. · Zbl 1119.93301
[41] Löfberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. Paper presented at: 2004 IEEE International Symposium on Computer Aided Control Systems Design; New Orleans, LA, USA; 2004. p. 284-289.
[42] Löfberg J. Pre‐and post‐processing sum‐of‐squares programs in practice. IEEE Trans Automat Control. 2009;54(5):1007-1011. · Zbl 1367.90002
[43] SturmJF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw.1999;11(1‐4):625-653. · Zbl 0973.90526
[44] HuS, QiL. The Laplacian of a uniform hypergraph. J Comb Optim.2015;29(2):331-366. · Zbl 1309.05120
[45] LiG, QiL, YuG. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer Linear Algebra Appl.2013;20(6):1001-1029. · Zbl 1313.65081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.