×

Radial symmetry for systems of fractional Laplacian. (English) Zbl 1438.35082

Summary: In this paper, we consider systems of fractional Laplacian equations in \(\mathbb{R}^n\) with nonlinear terms satisfying some quite general structural conditions. These systems were categorized critical and subcritical cases. We show that there is no positive solution in the subcritical cases, and we classify all positive solutions \(u_i\) in the critical cases by using a direct method of moving planes introduced in [W. Chen et al., Adv. Math. 308, 404–437 (2017; Zbl 1362.35320)] and some new maximum principles in [C. Li et al. , “Maximum principles and Bôcher type theorems”, Proc. Natl. Acad. Sci. USA 115, No. 27, 6976–6979 (2018; doi:10.1073/pnas.1804225115].

MSC:

35B50 Maximum principles in context of PDEs
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Citations:

Zbl 1362.35320
Full Text: DOI

References:

[1] Aleksandrov, A. D., Uniqueness theorems for surfaces in the large, V, Amer Math Soc Transl, 21, 2, 412-416 (1962) · Zbl 0119.16603
[2] Berestycki, H.; Nirenberg, L., Monotonicity, Symmetry and antisymmetry of solutions of semilinear elliptic equations, J Geometry Phys, 5, 2, 237-275 (1988) · Zbl 0698.35031
[3] Berestycki, H.; Nirenberg, L., On the method of moving planess and the sliding method, Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 22, 1, 1-37 (1991) · Zbl 0784.35025
[4] Brändle, C.; Colorado, E.; de Pablo, A.; Sánchez, U., A concaveconvex elliptic problem involving the fractional Laplacian, Proc Royal Soc Edinburgh: Sect A Math, 143, 1, 39-71 (2013) · Zbl 1290.35304
[5] Busca, J.; Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space, J Differential Equations, 163, 41-56 (2000) · Zbl 0952.35033
[6] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 31, 1, 23-53 (2014) · Zbl 1286.35248
[7] Cabré, X.; Tan, J., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv Math, 224, 5, 2052-2093 (2010) · Zbl 1198.35286
[8] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm Partial Differential Equations, 32, 8, 1245-1260 (2007) · Zbl 1143.26002
[9] Capella, A.; Dávila, J.; Dupaigne, L.; Sire, Y., Regularity of radial extremal solutions for some non-local semilinear equations, Comm Partial Differential Equations, 36, 8, 1353-1384 (2011) · Zbl 1231.35076
[10] Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv Math, 274, 167-198 (2015) · Zbl 1372.35332
[11] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional laplacian, Adv Math, 308, 404-437 (2017) · Zbl 1362.35320
[12] Chen, W.; Li, C., Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math Sci, 29, 949-960 (2009) · Zbl 1212.35103
[13] Chen, W.; Li, C.; Ou, B., Classifcation of solutions for an integral equation, Comm Pure Appl Math, 59, 3, 330-343 (2006) · Zbl 1093.45001
[14] Chen, W.; Zhu, J., Indefinite fractional elliptic problem and Liouville theorems, J Differential Equations, 269, 5, 4758-4785 (2016) · Zbl 1336.35089
[15] Cheng T. Monotonicity and symmetry of solutions of fractional Laplacian equations. (In preparation); Cheng T. Monotonicity and symmetry of solutions of fractional Laplacian equations. (In preparation) · Zbl 1366.35247
[16] Cheng, T.; Huang, G.; Li, C., The maximum principles for fractional Laplacian equations and their applications, Comm Contem Math, 1750018 (2017) · Zbl 1373.35330
[17] Dipierro, S.; Palatucci, G.; Valdinoci, E., Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, 68, 1, 201-216 (2013) · Zbl 1287.35023
[18] Felmer, P.; Wang, Y., Radial symmetry of positive solutions to equations involving the fractional Laplacian, Comm Contemp Math, 16, 1, 1350023 (2014) · Zbl 1286.35016
[19] de Figueiredo, D. G., Monotonicity and symmetry of solutions of elliptic systems in general domains, Nonlinear Differential Equations Appl, 1, 119-123 (1994) · Zbl 0822.35039
[20] de Figueiredo, D. G.; Felmer, P. L., A Liouville-type theorem for elliptic systems, Ann Sc Norm Super Pisa Cl Sci, 21, 4, 387-397 (1994) · Zbl 0820.35042
[21] Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm Math Phys, 68, 3, 209-243 (1979) · Zbl 0425.35020
[22] Gidas, B.; Ni, W.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(ℝ^n\), Adv Math Suppl Stud A, 7, 369-402 (1981) · Zbl 0469.35052
[23] Jarohs, S.; Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Matematica Pura ed Applicata, 2014, 1-19 (1923)
[24] Li, C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm Partial Differ Equ, 16, 2/3, 491-526 (1991) · Zbl 0735.35005
[25] Li, C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm Partial Differ Equ, 16, 4/5, 585-615 (1991) · Zbl 0741.35014
[26] Wu Z G, Xu H. Symmetry properties in systems of fractional Laplacian equations. To appear in Disc Contin Dyn Sys - A; Wu Z G, Xu H. Symmetry properties in systems of fractional Laplacian equations. To appear in Disc Contin Dyn Sys - A · Zbl 1407.35221
[27] Li, C.; Wu, Z. G.; Xu, H., Maximxm principles and Bôcher type theorems, Proc Natl Acad Sci, USA (2018)
[28] Liu, B.; Ma, L., Radial symmetry results for fractional Laplacian systems, Nonlinear Analysis: Theory, Methods Applications, 146, 120-135 (2016) · Zbl 1348.35296
[29] Y, Zhou C. Symmetry for an integral system with general nonlinearity. To appear in Disc Contin Dyn Sys - A; Y, Zhou C. Symmetry for an integral system with general nonlinearity. To appear in Disc Contin Dyn Sys - A · Zbl 1417.45003
[30] Ma, L.; Liu, B., Symmetry results for decay solutions of elliptic systems in the whole space, Adv Math, 225, 6, 3052-3063 (2010) · Zbl 1202.35080
[31] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J Math Pures Appl, 101, 3, 275-302 (2014) · Zbl 1285.35020
[32] Serrin, J., A symmetry problem in potential theory, Arch Rational Mech Anal, 43, 4, 304-318 (1971) · Zbl 0222.31007
[33] Servadei, R.; Valdinoci, E., Mountain Pass solutions for non-local elliptic operators, J Math Anal Appl, 389, 2, 887-898 (2012) · Zbl 1234.35291
[34] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm Pure Appl Math, 60, 1, 67-112 (2007) · Zbl 1141.49035
[35] Sirakov, B., On symmetry in elliptic systems, Appl Anal, 41, 1-9 (1991) · Zbl 0702.35043
[36] Troy, W. C., Symmetry properties in systems of semilinear elliptic equations, J Differential Equations, 42, 3, 400-413 (1981) · Zbl 0486.35032
[37] Yu, X., Liouville type theorem in the Heisenberg group with general nonlinearity, J Differential Equations, 254, 5, 2173-2182 (2013) · Zbl 1272.35097
[38] Yu, X., Liouville type theorem for nonlinear elliptic equation with general nonlinearity, Discrete Continuous Dynamical Systems -A, 34, 11, 4947-4966 (2014) · Zbl 1304.35244
[39] Zhang, L.; Li, C.; Chen, W.; Cheng, T., A Liouville theorem for α-harmonic functions in \(ℝ_+^n \), Disc Cont Dyn Sys, 36, 3, 1721-1736 (2016) · Zbl 1338.35461
[40] Zhuo, R.; Chen, W.; Cui, X.; Yuan, Z., A Liouville theorem for the fractional Laplacian, Disc Cont Dyn Sys, 36, 2, 1125-1141 (2016) · Zbl 1322.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.