×

New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. (English) Zbl 1437.92153

Summary: Parrondo’s games to date have largely focused on the dynamics of capital mean, and not capital spread – the potential of the framework in modelling ecological and socioeconomic sustainability and inequality has thus been ignored. Based on behavioural heuristics of distinct individualistic and multipartite interactive strategies, we introduce a novel multi-agent Parrondo game structure with dynamics dependent upon local inequality. Intriguingly, we observe the presence of doubly-anomalous scenarios, in which there is paradoxical population growth despite both pure strategies being losing, simultaneously accompanied by a suppression of inter-population capital variance to within constant bounds. Ecologically, this reflects sustainable population proliferation amidst disadvantageous conditions; the converse scenario in turn corresponds to inequality-plagued unsustainable growth. Different connectivity topologies, such as scale-free and random networks, are also investigated.

MSC:

92D40 Ecology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Landa, D., Meirowitz, A.: Game theory, information, and deliberative democracy. Am. J. Polit. Sci. 53, 427-444 (2009) · doi:10.1111/j.1540-5907.2009.00379.x
[2] Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591-646 (2009) · doi:10.1103/RevModPhys.81.591
[3] Han, Z., Niyato, D., Saad, W., Başar, T., Hjørungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, Cambridge (2012) · Zbl 1260.94002
[4] Li, X., Gao, L., Li, W.: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Expert Syst. Appl. 39, 288-297 (2012) · doi:10.1016/j.eswa.2011.07.019
[5] Smith, J.M.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209-221 (1974) · doi:10.1016/0022-5193(74)90110-6
[6] Samuelson, L.: Evolution and game theory. J. Econ. Perspect. 16, 47-66 (2002) · doi:10.1257/0895330027256
[7] Harmer, G.P., Abbott, D.: Losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999) · doi:10.1038/47220
[8] Harmer, G.P., Abbott, D.: Parrondo’s paradox. Stat. Sci. 14, 206-213 (1999) · Zbl 1059.60503 · doi:10.1214/ss/1009212247
[9] Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226-5229 (2000) · doi:10.1103/PhysRevLett.85.5226
[10] Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 01, L7-L12 (2001) · doi:10.1142/S021947750100007X
[11] Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg-Marquardt algorithms. J. Electron Spectrosc. Relat. Phenom. 227, 31-39 (2018) · doi:10.1016/j.elspec.2018.05.009
[12] Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 02, R71-R107 (2002) · doi:10.1142/S0219477502000701
[13] Abbott, D.: Asymmetry and disorder: a decade of Parrondo’s paradox. Fluct. Noise Lett. 09, 129-156 (2010) · doi:10.1142/S0219477510000010
[14] Ajdari, A., Prost, J.: Drift induced by a periodic potential of low symmetry: pulsed dielectrophoresis. C. R. Acad. Sci. Paris Série II 315, 1635-1639 (1993)
[15] Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446 (1994) · doi:10.1038/370446a0
[16] Cao, F.J., Dinis, L., Parrondo, J.M.R.: Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93, 040603 (2004) · doi:10.1103/PhysRevLett.93.040603
[17] Lee, Y., Allison, A., Abbott, D., Stanley, H.E.: Minimal Brownian ratchet: an exactly solvable model. Phys. Rev. Lett. 91, 220601 (2003) · doi:10.1103/PhysRevLett.91.220601
[18] Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurcat. Chaos 24, 1450008 (2014) · Zbl 1284.37062 · doi:10.1142/S0218127414500084
[19] Danca, M.-F., Tang, W.K., Wang, Q., Chen, G.: Suppressing chaos in fractional-order systems by periodic perturbations on system variables. Eur. Phys. J. B 86, 79 (2013) · Zbl 1515.37091 · doi:10.1140/epjb/e2012-31008-0
[20] Chau, N.P.: Controlling chaos by periodic proportional pulses. Phys. Lett. A 234, 193-197 (1997) · doi:10.1016/S0375-9601(97)00544-6
[21] Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos 11, 715-724 (2001) · Zbl 0977.37049 · doi:10.1063/1.1397769
[22] Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038-1040 (1987) · doi:10.1103/PhysRevLett.58.1038
[23] Pinsky, R., Scheutzow, M.: Some remarks and examples concerning the transient and recurrence of random diffusions. Ann. Inst. Henri Poincaré B 28, 519 (1992) · Zbl 0766.60098
[24] Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E.M., Parrondo, J.M.R.: Information entropy and Parrondo’s discrete-time ratchet. AIP Conf. Proc. 502, 544-549 (2000) · Zbl 0976.91001 · doi:10.1063/1.1302433
[25] Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017) · doi:10.1103/PhysRevE.96.062303
[26] Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225-239 (2002) · Zbl 1126.81303 · doi:10.1023/A:1014566822448
[27] Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Physica A 324, 152-156 (2003) · Zbl 1072.91520 · doi:10.1016/S0378-4371(02)01909-X
[28] Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175-R187 (2002) · doi:10.1142/S0219477502000981
[29] Lee, C.F., Johnson, N.F., Rodriguez, F., Quiroga, L.: Quantum coherence, correlated noise and Parrondo games. Fluct. Noise Lett. 02, L293-L298 (2002) · doi:10.1142/S0219477502000920
[30] Lee, C.F., Johnson, N.F.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343-349 (2002) · Zbl 0997.81020 · doi:10.1016/S0375-9601(02)01088-5
[31] Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87, 042119 (2013) · doi:10.1103/PhysRevA.87.042119
[32] de Franciscis, S., d’Onofrio, A.: Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg-Landau model. Phys. Rev. E 86, 021118 (2012) · doi:10.1103/PhysRevE.86.021118
[33] Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016) · doi:10.1038/srep34889
[34] Reed, F.A.: Two-locus epistasis with sexually antagonistic selection: a genetic Parrondo’s paradox. Genetics 176, 1923-1929 (2007) · doi:10.1534/genetics.106.069997
[35] Cheong, K.H., Koh, J.M., Jones, M.C.: Entangled mortality: a biological Parrondo’s paradox. Science E-Letter, 29 August 2018. http://science.sciencemag.org/content/360/6393/1075/tabe-letters
[36] Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227-253 (2005) · Zbl 1445.92306 · doi:10.1016/j.jtbi.2004.11.020
[37] Libby, E., Conlin, P.L., Kerr, B., Ratcliff, W.C.: Stabilizing multicellularity through ratcheting. Philos. Trans. R. Soc. B Lond. Biol. Sci. 371, 20150444 (2016) · doi:10.1098/rstb.2015.0444
[38] Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of Parrondo’s paradox. Proc. Natl. Acad. Sci. 115, E5258-5259 (2018) · doi:10.1073/pnas.1806485115
[39] Williams, P.D., Hastings, A.: Paradoxical persistence through mixed-system dynamics: towards a unified perspective of reversal behaviours in evolutionary ecology. Proc. R. Soc. Lond. B Biol. Sci. 278, 1281-1290 (2011) · doi:10.1098/rspb.2010.2074
[40] Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075-2078 (2005) · doi:10.1126/science.1114383
[41] Acar, M., van Oudenaarden, J.T.M.A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471 (2008) · doi:10.1038/ng.110
[42] Jansen, V.A.A., Yoshimura, J.: Populations can persist in an environment consisting of sink habitats only. Proc. Natl. Acad. Sci. 95, 3696-3698 (1998) · doi:10.1073/pnas.95.7.3696
[43] Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017) · doi:10.7554/eLife.21673
[44] Koh, J.M., Xie, N., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467-1477 (2018) · doi:10.1007/s11071-018-4436-2
[45] Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829-882 (2007) · doi:10.1103/RevModPhys.79.829
[46] Buceta, J., Lindenberg, K., Parrondo, J.M.R.: Stationary and oscillatory spatial patterns induced by global periodic switching. Phys. Rev. Lett. 88, 024103 (2002) · doi:10.1103/PhysRevLett.88.024103
[47] Lucas, C.H., Graham, W.M., Widmer, C.: Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133-196 (2012) · doi:10.1016/B978-0-12-394282-1.00003-X
[48] Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (mycetozoa). Proc. Natl. Acad. Sci. 94, 12007-12012 (1997) · doi:10.1073/pnas.94.22.12007
[49] Bastidas, R.J., Heitman, J.: Trimorphic stepping stones pave the way to fungal virulence. Proc. Natl. Acad. Sci. 106, 351-352 (2009) · doi:10.1073/pnas.0811994106
[50] Perc, M.: The Matthew effect in empirical data. J. R. Soc. Interface 11, 20140378 (2014) · doi:10.1098/rsif.2014.0378
[51] Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends. Ecol. Evol. 14, 405-410 (1999) · doi:10.1016/S0169-5347(99)01683-3
[52] Mihailovic, Z., Rajkovic, M.: Synchronous cooperative Parrondo’s games. Fluct. Noise Lett. 03, 389 (2003) · doi:10.1142/S0219477503001464
[53] Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debr. 6, 290-297 (1959) · Zbl 0092.15705
[54] Gómez-Gardeñes, J., Moreno, Y.: From scale-free to Erdos-Rényi networks. Phys. Rev. E 73, 056124 (2006) · doi:10.1103/PhysRevE.73.056124
[55] Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 37028 (2016) · doi:10.1038/srep37028
[56] Duan, F., Chapeau-Blondeau, F., Abbott, D.: Stochastic resonance in a parallel array of nonlinear dynamical elements. Phys. Lett. A 372, 2159-2166 (2008) · Zbl 1220.60025 · doi:10.1016/j.physleta.2007.10.092
[57] Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223-287 (1998) · doi:10.1103/RevModPhys.70.223
[58] Goychuk, I., Hänggi, P.: Non-Markovian stochastic resonance. Phys. Rev. Lett. 91, 070601 (2003) · doi:10.1103/PhysRevLett.91.070601
[59] Dykman, M.I., McClintock, P.V.E.: What can stochastic resonance do? Nature 391, 344 (1998) · doi:10.1038/34812
[60] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[61] Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173-187 (1999) · doi:10.1016/S0378-4371(99)00291-5
[62] Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001) · doi:10.1103/PhysRevE.64.026118
[63] Kasthurirathna, D., Piraveenan, M.: Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Sci. Rep. 5, 10448 (2015) · doi:10.1038/srep10448
[64] Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312 (2005) · doi:10.1038/nature03204
[65] Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149-11152 (2000) · doi:10.1073/pnas.200327197
[66] Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998) · Zbl 1368.05139 · doi:10.1038/30918
[67] Kasthurirathna, D., Piraveenan, M., Harré, M.: Influence of topology in the evolution of coordination in complex networks under information diffusion constraints. Eur. Phys. J. B 87, 3 (2014) · Zbl 1515.91123 · doi:10.1140/epjb/e2013-40824-5
[68] Pan, R.K., Sinha, S.: Modular networks with hierarchical organization: the dynamical implications of complex structure. Pramana 71, 331 (2009) · doi:10.1007/s12043-008-0166-1
[69] Foley, J.A., et al.: Solutions for a cultivated planet. Nature 478, 337 (2011) · doi:10.1038/nature10452
[70] Lineweaver, C.H., Fenner, Y., Gibson, B.K.: The galactic habitable zone and the age distribution of complex life in the milky way. Science 303, 59-62 (2004) · doi:10.1126/science.1092322
[71] Triandis, H.: Collectivism v. Individualism: A Reconceptualisation of a Basic Concept in Cross-Cultural Social Psychology, pp. 60-95. Palgrave Macmillan, London (1988)
[72] Hui, C.: Measurement of individualism-collectivism. J. Res. Personal. 22, 17-36 (1988) · doi:10.1016/0092-6566(88)90022-0
[73] Singh, R.K., Sinha, S.: Optimal interdependence enhances the dynamical robustness of complex systems. Phys. Rev. E 96, 020301 (2017) · doi:10.1103/PhysRevE.96.020301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.