×

Adaptive backstepping controller design for MIMO cancer immunotherapy using Laguerre polynomials. (English) Zbl 1437.92067

Summary: This paper focuses on designing an efficient adaptive backstepping controller for multi-input multi-output (MIMO) cancer immunotherapy system. The proposed controller takes the advantage of the backstepping control and the property of universal approximation of the Laguerre polynomials. In this structure; the Laguerre polynomials, whose weights are adjusted online according to some adaptive laws, approximate the nonlinear part of the system that simplifies the design of backstepping controller. The proposed adaptive backstepping controller structure has simple but yet efficient structure for the control of MIMO cancer immunotherapy system when compared to the classical backstepping method. The main advantage of the proposed control scheme is that it is not only a model-free control structure but also it has a significantly low number of adaptive parameters to be tuned on-line. Moreover, it is proven that all the signals in the closed-loop system are bounded based on the Lyapunov stability theory. The simulation results confirm that only after short days of drug treatment the number of tumor cells is reduced to zero.

MSC:

92C50 Medical applications (general)
93C40 Adaptive control/observation systems
93C35 Multivariable systems, multidimensional control systems
93C95 Application models in control theory
Full Text: DOI

References:

[1] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley New York · Zbl 0763.93043
[2] Yu, J.; Zhao, L.; Yu, H.; Lin, C., Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems, Automatica, 105, 71-79 (2019) · Zbl 1429.93395
[3] Wang, H.; Kang, S.; Feng, Z., Finite-Time adaptive fuzzy command filtered backstepping control for a class of nonlinear systems, Int. J. Fuzzy Syst., 21, 8, 2575-2587 (2019)
[4] Li, Y.; Tong, S.; Li, T., Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping, Nonlinear Anal. Real World Appl., 14, 1, 483-494 (2013) · Zbl 1254.93100
[5] Han, Y.; Yu, J.; Zhao, L.; Yu, H.; Lin, C., Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering, IET Control Theory Appl., 12, 15, 2148-2155 (2018)
[6] Tan, Y.; Chang, J.; Tan, H., Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties, IEEE Trans. Ind. Electron., 50, 5, 944-952 (2003)
[7] Aounallah, T.; Essounbouli, N.; Hamzaoui, A.; Bouchafaa, F., Algorithm on fuzzy adaptive backstepping control of fractional order for doubly-fed induction generators, IET Renew. Power Gener., 12, 8, 962-967 (2018)
[8] Fei, J.; Lu, C., Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure, IEEE Trans. Neural Netw. Learn. Syst., 29, 4, 1275-1286 (2018)
[9] Yu, J.; Zhao, L.; Yu, H.; Lin, C.; Dong, W., Fuzzy finite-time command filtered control of nonlinear systems with input saturation, IEEE Trans. Cybern., 48, 8, 2378-2387 (2017)
[10] Xu, D.; Dai, Y.; Yang, C.; Yan, X., Adaptive fuzzy sliding mode command-filtered backstepping control for islanded PV microgrid with energy storage system, J. Frankl. Inst., 356, 4, 1880-1898 (2019) · Zbl 1409.93043
[11] Rokhforoz, P.; Jamshidi, A. A.; Sarvestani, N. N., Adaptive robust control of cancer chemotherapy with extended Kalman filter observer, Inform. Med. Unlocked, 8, 1-7 (2017)
[12] Wei, H.-C.; Lin, J.-T., Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction, Int. J. Bifurc. Chaos, 23, 04, Article 1350068 pp. (2013) · Zbl 1270.34143
[13] Blattman, J. N.; Greenberg, P. D., Cancer immunotherapy: a treatment for the masses, Science, 305, 5681, 200-205 (2004)
[14] Yang, J.; Tang, S.; Cheke, R. A., Modelling pulsed immunotherapy of tumour-immune interaction, Math. Comput. Simul., 109, 92-112 (2015) · Zbl 1519.92106
[15] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37, 3, 235-252 (1998) · Zbl 0902.92012
[16] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S., Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56, 2, 295-321 (1994) · Zbl 0789.92019
[17] De Pillis, L.; Radunskaya, A., The Dynamics of an Optirnally Controlled Tumor Model: A Case Study (2003) · Zbl 1043.92018
[18] De Pillis, L. G.; Radunskaya, A., A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Comput. Math. Methods Med., 3, 2, 79-100 (2001) · Zbl 0985.92023
[19] Moradi, H.; Sharifi, M.; Vossoughi, G., Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: a comparison between three hypotheses, Comput. Biol. Med., 56, 145-157 (2015)
[20] Piccoli, B.; Castiglione, F., Optimal vaccine scheduling in cancer immunotherapy, Phys. A: Stat. Mech. Appl., 370, 2, 672-680 (2006)
[21] Dua, P.; Dua, V.; Pistikopoulos, E. N., Optimal delivery of chemotherapeutic agents in cancer, Comput. Chem. Eng., 32, 1-2, 99-107 (2008)
[22] Chien, T.-L.; Chen, C.-C.; Huang, C.-J., Feedback linearization control and its application to MIMO cancer immunotherapy, IEEE Trans. Control Syst. Technol., 18, 4, 953-961 (2010)
[23] Moradi Zirkohi, M., Finite-time adaptive fuzzy backstepping control of drug dosage regimen in cancer treatment, Trans. Inst. Meas. Control (2019), 0142331219831328
[24] Izadbakhsh, A.; Khorashadizadeh, S.; Kheirkhahan, P., Tracking control of electrically driven robots using a model-free observer, Robotica, 37, 4, 729-755 (2019)
[25] Zarei, R.; Khorashadizadeh, S., Direct adaptive model-free control of a class of uncertain nonlinear systems using Legendre polynomials, Trans. Inst. Meas. Control, 41, 11, 3081-3091 (2019)
[26] Zhang, X.; Hu, J., Model-free adaptive iterative learning control for a pneumatic muscle-driven robot, (Proceedings of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (2019), IEEE), 2246-2249
[27] Jin, M.; Lee, J.; Tsagarakis, N. G., Model-free robust adaptive control of humanoid robots with flexible joints, IEEE Trans. Ind. Electron., 64, 2, 1706-1715 (2017)
[28] Zill, D.; Wright, W. S.; Cullen, M. R., Advanced Engineering Mathematics (2011), Jones & Bartlett Learning
[29] Huang, A.-C.; Chien, M.-C., Adaptive Control of Robot manipulators: a Unified Regressor-Free Approach (2010), World Scientific · Zbl 1204.93002
[30] Haung, A.-C.; Liao, K.-K., FAT-based adaptive sliding control for flexible arms: theory and experiments, J. Sound Vib., 298, 1-2, 194-205 (2006) · Zbl 1243.74123
[31] Zirkohi, M. M., Direct adaptive function approximation techniques based control of robot manipulators, J. Dyn. Syst. Meas. Control, 140, 1, Article 011006 pp. (2018)
[32] Cappuccio, A.; Castiglione, F.; Piccoli, B., Determination of the optimal therapeutic protocols in cancer immunotherapy, Math. Biosci., 209, 1, 1-13 (2007) · Zbl 1137.92018
[33] Nasiri, H.; Kalat, A. A., Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment, Biomed. Signal Process. Control, 42, 267-276 (2018)
[34] Gülsu, M.; Gürbüz, B.; Öztürk, Y.; Sezer, M., Laguerre polynomial approach for solving linear delay difference equations, Appl. Math. Comput., 217, 15, 6765-6776 (2011) · Zbl 1211.65166
[35] Beckenbach, E. F.; Bellman, R., Inequalities (2012), Springer Science & Business Media · Zbl 0513.26003
[36] Song, B.; Hedrick, J. K., Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach (2011), Springer Science & Business Media · Zbl 1216.93002
[37] Fateh, M. M.; Zirkohi, M. M., Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation, Veh. Syst. Dyn., 49, 12, 1951-1965 (2011)
[38] Zirkohi, M. M., Chaos synchronization using higher-order adaptive PID controller, AEU-Int. J. Electron. Commun., 94, 157-167 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.