×

Vibration and deflection analysis of thin cracked and submerged orthotropic plate under thermal environment using strain gradient theory. (English) Zbl 1437.86004

Summary: Based on a non-classical plate theory, a nonlinear analytical model is proposed to analyze transverse vibration of thin partially cracked and submerged orthotropic plate in the presence of thermal environment. The governing equation for the cracked plate is derived using the Kirchhoff’s thin plate theory in conjunction with the strain gradient theory of elasticity. The effect of centrally located surface crack is deduced using appropriate crack compliance coefficients based on the simplified line spring model, whereas the effect of thermal environment is introduced using moments and in-plane forces. The influence of fluidic medium is incorporated in the governing equation in the form of fluid forces associated with its inertial effects. The equation has been solved by transforming the lateral deflection in terms of modal functions. The shift in primary resonance due to crack, length scale parameter and temperature has also been derived with central deflection. To demonstrate the accuracy of the present model, a few comparison studies are carried out with the published literature. The variation in fundamental frequency of the cracked plate is studied considering various parameters such as crack length, plate thickness, level of submergence, temperature and length scale parameter. It has been concluded that the frequency is affected by crack length, temperature and level of submergence. A comparison has also been made for the results obtained from the classical plate theory and Strain gradient theory. Furthermore, the variation in frequency response and peak amplitude of the cracked plate is studied using method of multiple scales to show the phenomenon of bending hardening or softening as affected by level of submergence, temperature, crack length and length scale parameter .

MSC:

86A05 Hydrology, hydrography, oceanography
86A60 Geological problems
Full Text: DOI

References:

[1] Lamb, H.: On the vibrations of an elastic plate in contact with water author. Proc. R. Soc. Lond. Ser. A 98, 205-216 (2016) · JFM 47.0738.03 · doi:10.1098/rspa.1920.0064
[2] Kwak, M.K.: Hydroelastic vibration of rectangular plates. J. Appl. Mech. 63, 110 (1996) · Zbl 0884.73050 · doi:10.1115/1.2787184
[3] Kwak, M.K., Kim, K.C.: Axisymmetric vibration of circular plates in contact with fluid. J. Sound Vib. 146, 381-389 (1991) · doi:10.1016/0022-460X(91)90696-H
[4] Amabili, M., Frosali, G., Kwak, M.K.: Free vibrations of annular plates coupled with fluids. J. Sound Vib. 191, 825-846 (1996) · Zbl 1232.76036 · doi:10.1006/jsvi.1996.0158
[5] Haddara, M.R., Cao, S.: A study of the dynamic response of submerged rectangular flat plates. Mar. Struct. 9, 913-933 (1996) · doi:10.1016/0951-8339(96)00006-8
[6] Kerboua, Y., Lakis, A.A., Thomas, M., Marcouiller, L.: Vibration analysis of rectangular plates coupled with fluid. Appl. Math. Model. 32, 2570-2586 (2008) · Zbl 1167.74585 · doi:10.1016/j.apm.2007.09.004
[7] Hosseini-Hashemi, S., Karimi, M., Rokni, H.: Natural frequencies of rectangular Mindlin plates coupled with stationary fluid. Appl. Math. Model. 36, 764-778 (2012) · Zbl 1236.74106 · doi:10.1016/j.apm.2011.07.007
[8] Liu, T., Wang, K., Dong, Q.W., Liu, M.S.: Hydroelastic natural vibrations of perforated plates with cracks. Proc. Eng. 1, 129-133 (2009) · doi:10.1016/j.proeng.2009.06.030
[9] Si, X.H., Lu, W.X., Chu, F.L.: Modal analysis of circular plates with radial side cracks and in contact with water on one side based on the Rayleigh-Ritz method. J. Sound Vib. 331, 231-251 (2012) · doi:10.1016/j.jsv.2011.08.026
[10] Si, X., Lu, W., Chu, F.: Dynamic analysis of rectangular plates with a single side crack and in contact with water on one side based on the Rayleigh-Ritz method. J. Fluids Struct. 34, 90-104 (2012) · doi:10.1016/j.jfluidstructs.2012.06.005
[11] Murphy, K.D., Ferreira, D.: Thermal buckling of rectangular plates. Int. J. Solids Struct. 38, 3979-3994 (2001) · Zbl 0969.74505 · doi:10.1016/S0020-7683(00)00240-7
[12] Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J. Sound Vib. 255, 579-602 (2002) · doi:10.1006/jsvi.2001.4161
[13] Li, Q., Iu, V.P., Kou, K.P.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment. J. Sound Vib. 324, 733-750 (2009) · doi:10.1016/j.jsv.2009.02.036
[14] Kim, Y.-W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284, 531-549 (2005) · doi:10.1016/j.jsv.2004.06.043
[15] Viola, E., Tornabene, F., Fantuzzi, N.: Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Compos. Struct. 106, 815-834 (2013) · doi:10.1016/j.compstruct.2013.07.034
[16] Natarajan, S., Chakraborty, S., Ganapathi, M., Subramanian, M.: A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method. Eur. J. Mech. A/Solids 44, 136-147 (2014) · Zbl 1406.74256 · doi:10.1016/j.euromechsol.2013.10.003
[17] Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625-635 (2007) · Zbl 1239.74047 · doi:10.1007/s00419-007-0166-5
[18] Movassagh, A.A., Mahmoodi, M.J.: A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur. J. Mech./A Solids 40, 50-59 (2017) · Zbl 1406.74067 · doi:10.1016/j.euromechsol.2012.12.008
[19] Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757-2764 (2009) · Zbl 1167.74489 · doi:10.1016/j.ijsolstr.2009.03.004
[20] Yin, L., Qian, Q., Wang, L., Xia, W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23, 386-393 (2010) · doi:10.1016/S0894-9166(10)60040-7
[21] Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109-124 (1968) · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[22] Gao, X.L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Contin. Mech. Thermodyn. 28, 195-213 (2016) · Zbl 1348.74213 · doi:10.1007/s00161-015-0413-x
[23] Gupta, A., Jain, N.K., Salhotra, R., Joshi, P.V.: Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory. Int. J. Mech. Sci. 100, 269-282 (2015) · doi:10.1016/j.ijmecsci.2015.07.004
[24] Gupta, A., Jain, N.K., Salhotra, R., Rawani, A.M., Joshi, P.V.: Effect of fibre orientation on non-linear vibration of partially cracked thin rectangular orthotropic micro plate: an analytical approach. Int. J. Mech. Sci. 105, 378-397 (2015) · doi:10.1016/j.ijmecsci.2015.11.020
[25] Rice, J., Levy, N.: The part-through surface crack in an elastic plate. J. Appl. Mech. 39, 185-194 (1972) · Zbl 0229.73092 · doi:10.1115/1.3422609
[26] Israr, A., Cartmell, M.P., Manoach, E., Trendafilova, I., Ostachowicz, W., Krawczuk, M., Zak, A.: Analytical modelling and vibration analysis of cracked rectangular plates with different loading and boundary conditions. J. Appl. Mech. 76, 1-9 (2009) · doi:10.1115/1.2998755
[27] Ismail, R., Cartmell, M.P.: An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation. J. Sound Vib. 331, 2929-2948 (2012) · doi:10.1016/j.jsv.2012.02.011
[28] Joshi, P.V., Jain, N.K., Ramtekkar, G.D.: Analytical modelling for vibration analysis of partially cracked orthotropic rectangular plates. Eur. J. Mech. A/Solids 50, 100-111 (2015) · Zbl 1406.74300 · doi:10.1016/j.euromechsol.2014.11.007
[29] Joshi, P.V., Jain, N.K., Ramtekkar, G.D., Virdi, G.S.: Vibration and buckling analysis of partially cracked thin orthotropic rectangular plates in thermal environment. Thin Walled Struct. 109, 143-158 (2016) · doi:10.1016/j.tws.2016.09.020
[30] Soni, S., Jain, N.K., Joshi, P.V.: Vibration analysis of partially cracked plate submerged in fluid. J. Sound Vib. 412, 28-57 (2018) · doi:10.1016/j.jsv.2017.09.016
[31] Soni, S., Jain, N.K., Joshi, P.V.: Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid. Nonlinear Dyn. 90, 137-170 (2017) · doi:10.1007/s11071-017-3652-5
[32] Jones, R.M.: Buckling of Bars, Plates, and Shells. Bull Ridge Corporation, Blacksburg (2006)
[33] Luo, Y., Karney, B.W.: Virtual testing for modal and damping ratio identification of submerged structures using the PolyMAX algorithm with two-way fluid-structure interactions. J. Fluids Struct. 54, 1-18 (2016)
[34] Joshi, P.V., Jain, N.K., Ramtekkar, G.D.: Effect of thermal environment on free vibration of cracked rectangular plate: an analytical approach. Thin Walled Struct. 91, 38-49 (2015) · doi:10.1016/j.tws.2015.02.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.