×

\(\mathrm{AdS}_5\) black hole entropy near the BPS limit. (English) Zbl 1437.83064

Summary: We analyze \(\mathrm{AdS}_5\) black holes that are nearly supersymmetric. They depart from the BPS limit in two distinct ways: a temperature takes them above extremality and a potential maintains extremality but violates a certain constraint. We study the thermodynamics of these deformations and their interplay in detail. We discuss recent microscopic computations of BPS black hole entropy in \(\mathcal{N} = 4\) SYM and generalize the arguments to the nearBPS regime by relaxing constraints imposed by supersymmetry. Our methods recover gravitational results from microscopic theory also for nearBPS black holes.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
81P17 Quantum entropies
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Strominger, A.; Vafa, C., Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett., B 379, 99 (1996) · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[2] Benini, F.; Hristov, K.; Zaffaroni, A., Black hole microstates in AdS_4from supersymmetric localization, JHEP, 05, 054 (2016) · Zbl 1388.83388 · doi:10.1007/JHEP05(2016)054
[3] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[4] A. Kitaev, A simple model of quantum holography, http://online.kitp.ucsb.edu/online/entangled15/.
[5] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[6] Gao, P.; Jafferis, DL; Wall, AC, Traversable Wormholes via a Double Trace Deformation, JHEP, 12, 151 (2017) · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[7] Rangamani, M.; Takayanagi, T., Holographic Entanglement Entropy, Lect. Notes Phys., 931, 1 (2017) · Zbl 1371.81011 · doi:10.1007/978-3-319-52573-0_1
[8] D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoS(TASI2017)002 (2018) [arXiv:1802.01040] [INSPIRE].
[9] Gutowski, JB; Reall, HS, Supersymmetric AdS_5black holes, JHEP, 02, 006 (2004) · doi:10.1088/1126-6708/2004/02/006
[10] Gutowski, JB; Reall, HS, General supersymmetric AdS_5black holes, JHEP, 04, 048 (2004) · doi:10.1088/1126-6708/2004/04/048
[11] Chong, ZW; Cvetič, M.; Lü, H.; Pope, CN, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett., 95, 161301 (2005) · doi:10.1103/PhysRevLett.95.161301
[12] Wu, S-Q, General Nonextremal Rotating Charged AdS Black Holes in Five-dimensional U(1)^3Gauged Supergravity: A Simple Construction Method, Phys. Lett., B 707, 286 (2012)
[13] Kim, S.; Lee, K-M, 1/16-BPS Black Holes and Giant Gravitons in the AdS_5× S^5Space, JHEP, 12, 077 (2006) · Zbl 1226.83067 · doi:10.1088/1126-6708/2006/12/077
[14] Kinney, J.; Maldacena, JM; Minwalla, S.; Raju, S., An Index for 4 dimensional super conformal theories, Commun. Math. Phys., 275, 209 (2007) · Zbl 1122.81070 · doi:10.1007/s00220-007-0258-7
[15] Berkooz, M.; Reichmann, D.; Simon, J., A Fermi Surface Model for Large Supersymmetric AdS5 Black Holes, JHEP, 01, 048 (2007) · doi:10.1088/1126-6708/2007/01/048
[16] Grant, L.; Grassi, PA; Kim, S.; Minwalla, S., Comments on 1/16 BPS Quantum States and Classical Configurations, JHEP, 05, 049 (2008) · doi:10.1088/1126-6708/2008/05/049
[17] Chang, C-M; Yin, X., 1/16 BPS states in \(\mathcal{N} = 4\) super-Yang-Mills theory, Phys. Rev., D 88, 106005 (2013)
[18] Hosseini, SM; Hristov, K.; Zaffaroni, A., An extremization principle for the entropy of rotating BPS black holes in AdS_5, JHEP, 07, 106 (2017) · Zbl 1380.83146 · doi:10.1007/JHEP07(2017)106
[19] Cabo-Bizet, A.; Cassani, D.; Martelli, D.; Murthy, S., Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes, JHEP, 10, 062 (2019) · Zbl 1427.83036 · doi:10.1007/JHEP10(2019)062
[20] Assel, B.; Cassani, D.; Martelli, D., Localization on Hopf surfaces, JHEP, 08, 123 (2014) · doi:10.1007/JHEP08(2014)123
[21] Assel, B.; Cassani, D.; Di Pietro, L.; Komargodski, Z.; Lorenzen, J.; Martelli, D., The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP, 07, 043 (2015) · Zbl 1388.81395 · doi:10.1007/JHEP07(2015)043
[22] Bobev, N.; Bullimore, M.; Kim, H-C, Supersymmetric Casimir Energy and the Anomaly Polynomial, JHEP, 09, 142 (2015) · Zbl 1388.81777
[23] Brünner, F.; Regalado, D.; Spiridonov, VP, Supersymmetric Casimir energy and SL(3, ℤ) transformations, JHEP, 07, 041 (2017) · Zbl 1380.81376 · doi:10.1007/JHEP07(2017)041
[24] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
[25] Benini, F.; Milan, P., Black holes in 4d \(\mathcal{N} = 4\) Super-Yang-Mills, Phys. Rev., X 10 (2020) · doi:10.1103/PhysRevX.10.021037
[26] F. Benini and P. Milan, A Bethe Ansatz type formula for the superconformal index, arXiv:1811.04107 [INSPIRE]. · Zbl 1439.81087
[27] Hosseini, SM; Nedelin, A.; Zaffaroni, A., The Cardy limit of the topologically twisted index and black strings in AdS_5, JHEP, 04, 014 (2017) · Zbl 1378.81125 · doi:10.1007/JHEP04(2017)014
[28] Hong, J.; Liu, JT, The topologically twisted index of \(\mathcal{N} = 4\) super-Yang-Mills on T^2× S^2and the elliptic genus, JHEP, 07, 018 (2018) · Zbl 1395.81268 · doi:10.1007/JHEP07(2018)018
[29] A. Zaffaroni, Lectures on AdS Black Holes, Holography and Localization, 2019, arXiv:1902.07176 [INSPIRE].
[30] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Comments on deconfinement in AdS/CFT, arXiv:1811.08646 [INSPIRE].
[31] Honda, M., Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, Phys. Rev., D 100 (2019)
[32] Arabi Ardehali, A., Cardy-like asymptotics of the 4d \(\mathcal{N} = 4\) index and AdS_5blackholes, JHEP, 06, 134 (2019) · Zbl 1416.83037 · doi:10.1007/JHEP06(2019)134
[33] S. Choi and S. Kim, Large AdS6 black holes from C F T_5 , arXiv:1904.01164 [INSPIRE].
[34] J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy Formula, arXiv:1904.03455 [INSPIRE].
[35] Cabo-Bizet, A.; Cassani, D.; Martelli, D.; Murthy, S., The asymptotic growth of states of the 4d \(\mathcal{N} = 1\) superconformal index, JHEP, 08, 120 (2019) · Zbl 1421.81134 · doi:10.1007/JHEP08(2019)120
[36] A. Amariti, I. Garozzo and G. Lo Monaco, Entropy function from toric geometry, arXiv:1904.10009 [INSPIRE].
[37] Nian, J.; Pando Zayas, LA, Microscopic entropy of rotating electrically charged AdS_4black holes from field theory localization, JHEP, 03, 081 (2020) · Zbl 1435.83097 · doi:10.1007/JHEP03(2020)081
[38] Almheiri, A.; Polchinski, J., Models of AdS_2backreaction and holography, JHEP, 11, 014 (2015) · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[39] Almheiri, A.; Kang, B., Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP, 10, 052 (2016) · Zbl 1390.83167 · doi:10.1007/JHEP10(2016)052
[40] Larsen, F., A nAttractor mechanism for nAdS_2/nC F T_1holography, JHEP, 04, 055 (2019) · Zbl 1415.81087 · doi:10.1007/JHEP04(2019)055
[41] Larsen, F.; Martinec, EJ, U(1) charges and moduli in the D1-D5 system, JHEP, 06, 019 (1999) · Zbl 0961.81073 · doi:10.1088/1126-6708/1999/06/019
[42] Larsen, F.; Martinec, EJ, Currents and moduli in the (4, 0) theory, JHEP, 11, 002 (1999) · Zbl 0957.81042 · doi:10.1088/1126-6708/1999/11/002
[43] Birkandan, T.; Cvetič, M., Wave Equation for the Wu Black Hole, JHEP, 09, 121 (2014) · doi:10.1007/JHEP09(2014)121
[44] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged supergravities: Thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].
[45] Silva, PJ, Thermodynamics at the BPS bound for Black Holes in AdS, JHEP, 10, 022 (2006) · doi:10.1088/1126-6708/2006/10/022
[46] Preskill, J.; Schwarz, P.; Shapere, AD; Trivedi, S.; Wilczek, F., Limitations on the statistical description of black holes, Mod. Phys. Lett., A 6, 2353 (1991) · Zbl 1020.83620 · doi:10.1142/S0217732391002773
[47] Sundborg, B., The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys., B 573, 349 (2000) · Zbl 0947.81126 · doi:10.1016/S0550-3213(00)00044-4
[48] Aharony, O.; Marsano, J.; Minwalla, S.; Papadodimas, K.; Van Raamsdonk, M., The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys., 8, 603 (2004) · Zbl 1079.81046 · doi:10.4310/ATMP.2004.v8.n4.a1
[49] P.H. Ginsparg and G.W. Moore, Lectures on 2-D gravity and 2-D string theory, in Proceedings, Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, Boulder, U.S.A., 1-26 June 1992, pp. 277-469 (1993) [hep-th/9304011] [INSPIRE].
[50] Mariño, M., Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys., A 44, 463001 (2011) · Zbl 1270.81235
[51] Gross, DJ; Witten, E., Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev., D 21, 446 (1980)
[52] Sen, A., Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav., 40, 2249 (2008) · Zbl 1153.83007 · doi:10.1007/s10714-008-0626-4
[53] Callan, CG; Maldacena, JM, D-brane approach to black hole quantum mechanics, Nucl. Phys., B 472, 591 (1996) · Zbl 0925.83041 · doi:10.1016/0550-3213(96)00225-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.