×

Stability, convergence and Hopf bifurcation analyses of the classical car-following model. (English) Zbl 1437.76004

Summary: Reaction delays play an important role in determining the qualitative dynamical properties of a platoon of vehicles traversing a straight road. In this paper, we investigate the impact of delayed feedback on the dynamics of the classical car-following model (CCFM). Specifically, we analyze the CCFM in three regimes – no delay, small delay and arbitrary delay. First, we derive a sufficient condition for local stability of the CCFM in no-delay and small-delay regimes using control-theoretic methods. Next, we derive the necessary and sufficient condition for local stability of the CCFM for an arbitrary delay. We then demonstrate that the transition of traffic flow from the locally stable to the unstable regime occurs via a Hopf bifurcation, thus resulting in limit cycles in system dynamics. Physically, these limit cycles manifest as back-propagating congestion waves on highways. In the context of human-driven vehicles, our work provides phenomenological insight into the impact of reaction delays on the emergence and evolution of traffic congestion. In the context of self-driven vehicles, our work has the potential to provide design guidelines for control algorithms running in self-driven cars to avoid undesirable phenomena. Specifically, designing control algorithms that avoid jerky vehicular movements is essential. Hence, we derive the necessary and sufficient condition for non-oscillatory convergence of the CCFM. This ensures smooth traffic flow and good ride quality. Next, we characterize the rate of convergence of the CCFM and bring forth the interplay between local stability, non-oscillatory convergence and the rate of convergence of the CCFM. We then study the nonlinear oscillations in system dynamics that emerge when the CCFM loses local stability via a Hopf bifurcation. To that end, we outline an analytical framework to establish the type of the Hopf bifurcation and the asymptotic orbital stability of the emergent limit cycles using Poincaré normal forms and the center manifold theory. Next, we numerically bring forth the supercritical nature of the bifurcation that result in asymptotically orbitally stable limit cycles. The analysis is complemented with stability charts, bifurcation diagrams and MATLAB simulations. Thus, using a combination of analysis and numerical computations, we highlight the trade-offs inherent among various system parameters and also provide design guidelines for the upper longitudinal controller of self-driven vehicles.

MSC:

76A30 Traffic and pedestrian flow models
70K50 Bifurcations and instability for nonlinear problems in mechanics

Software:

Matlab

References:

[1] Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, London (2012) · Zbl 1268.70002 · doi:10.1007/978-1-4614-1433-9
[2] Greengard, S.: Smart transportation networks drive gains. Commun. ACM 58, 25-27 (2015) · doi:10.1145/2686742
[3] Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545-567 (1961) · Zbl 0096.14205 · doi:10.1287/opre.9.4.545
[4] Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199-329 (2000) · doi:10.1016/S0370-1573(99)00117-9
[5] Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067-1141 (2001) · doi:10.1103/RevModPhys.73.1067
[6] Kamath, G.K., Jagannathan, K., Raina, G.: Car-following models with delayed feedback: local stability and Hopf bifurcation. In: Proceedings of the 53rd Annual Allerton Conference on Communication, Control and Computing (2015)
[7] Orosz, G., Stépán, G.: Subcritical Hopf bifurcations in a car-following model with reaction-time delay. Proc. R. Soc. A 642, 2643-2670 (2006) · Zbl 1149.70326 · doi:10.1098/rspa.2006.1660
[8] Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58, 5429-5435 (1998) · doi:10.1103/PhysRevE.58.5429
[9] Zhang, X., Jarrett, D.F.: Stability analysis of the classical car-following model. Transp. Res. Part B 31, 441-462 (1997) · doi:10.1016/S0191-2615(97)00006-4
[10] Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, London (2011) · Zbl 0787.34002
[11] Sipahi, R., Niculescu, S.I.: Analytical stability study of a deterministic car following model under multiple delay interactions. In: Proceedings of Mechanical and Industrial Engineering Faculty Publications (2006)
[12] Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput.-Aided Civil Infrastruct. Eng. 23, 125-137 (2008) · doi:10.1111/j.1467-8667.2007.00529.x
[13] Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165-184 (1958) · doi:10.1287/opre.6.2.165
[14] Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Oper. Res. 7, 86-106 (1959) · Zbl 1414.90089 · doi:10.1287/opre.7.1.86
[15] Unwin, E.A., Duckstein, L.: Stability of reciprocal-spacing type car-following models. Transp. Sci. 1, 95-108 (1967) · doi:10.1287/trsc.1.2.95
[16] Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysis—a mathematical perspective. Transp. Plan. Technol. 34, 3-18 (2011) · doi:10.1080/03081060.2011.530826
[17] Sun, J., Zheng, Z., Sun, J.: Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transp. Res. Part B 109, 212-237 (2018) · doi:10.1016/j.trb.2018.01.013
[18] Sipahi, R.; Niculescu, SI; Atay, FM (ed.), Deterministic time-delayed traffic flow models: a survey, 297-322 (2010), Berlin · Zbl 1226.90025
[19] Mulla, A.K., Joshi, A., Chavan, R., Chakraborty, D., Manjunath, D.: A microscopic model for lane-less traffic. IEEE Trans. Control Netw. Syst. (2018). https://doi.org/10.1109/TCNS.2018.2834313 · Zbl 1511.90116
[20] Zhai, C., Wu, W.: A new car-following model considering driver’s characteristics and traffic jerk. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4318-7
[21] Zhang, L., Orosz, G.: Beyond-line-of-sight identification by using vehicle-to-vehicle communication. IEEE Trans. Intell. Transp. Syst. 19, 1962-1972 (2018) · doi:10.1109/TITS.2017.2747582
[22] Gasser, I., Sirito, G., Werner, B.: Bifurcation analysis of a class of ‘car following’ traffic models. Phys. D 197, 222-241 (2004) · Zbl 1068.34038 · doi:10.1016/j.physd.2004.07.008
[23] Chen, J., Liu, R., Ngoduy, D., Shi, Z.: A new multi-anticipative car-following model with consideration of the desired following distance. Nonlinear Dyn. 85, 2705-2717 (2016) · doi:10.1007/s11071-016-2856-4
[24] Yi-Rong, K., Di-Hua, S., Shu-Hong, Y.: A new car-following model considering driver’s individual anticipation behavior. Nonlinear Dyn. 82, 1293-1302 (2015) · Zbl 1437.82017 · doi:10.1007/s11071-015-2236-5
[25] Liu, H., Sun, D., Zhao, M.: Analysis of traffic flow based on car-following theory: a cyber-physical perspective. Nonlinear Dyn. 84, 881-893 (2016) · Zbl 1354.90037 · doi:10.1007/s11071-015-2534-y
[26] Davoodi, N., Soheili, A.R., Hashemi, S.M.: A macro-model for traffic flow with consideration of driver’s reaction time and distance. Nonlinear Dyn. 83, 1621-1628 (2016) · doi:10.1007/s11071-015-2435-0
[27] Rajamani, R., Zhu, C.: Semi-autonomous adaptive cruise control systems. IEEE Trans. Veh. Technol. 51, 1186-1192 (2002) · doi:10.1109/TVT.2002.800617
[28] Qu, Z., Wang, J., Hull, R.A.: Cooperative control of dynamical systems with application to autonomous vehicles. IEEE Trans. Autom. Control 53, 894-911 (2008) · Zbl 1367.93076 · doi:10.1109/TAC.2008.920232
[29] Chavan, R.U., Belur, M., Chakraborty, D., Manjunath, D.: On the stability and formations in ad hoc multilane vehicular traffic. In: Proceedings of the 7th International Conference on Communication Systems and Networks (COMSNETS) (2015)
[30] Summers, T.H., Yu, C., Dasgupta, S., Anderson, B.D.O.: Control of minimally persistent leader-remote-follower and coleader formations in the plane. IEEE Trans. Autom. Control 56, 2778-2792 (2011) · Zbl 1368.93004 · doi:10.1109/TAC.2011.2146890
[31] Dey, K.C., Yan, L., Wang, X., Wang, Y., Shen, H., Chowdhury, M., Yu, L., Qiu, C., Soundararaj, V.: A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC). IEEE Trans. Intell. Transp. Syst. 17, 491-509 (2016) · doi:10.1109/TITS.2015.2483063
[32] Orosz, G.: Connected cruise control: modelling, delay effects, and nonlinear behaviour. Veh. Syst. Dyn. 54, 1147-1176 (2016) · doi:10.1080/00423114.2016.1193209
[33] di Bernardo, M., Salvi, A., Santini, S.: Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 16, 102-112 (2015) · doi:10.1109/TITS.2014.2328439
[34] Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008) · Zbl 1144.93001
[35] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations With Applications. Clarendon Press, Oxford (1991) · Zbl 0780.34048
[36] Herstein, I.N.: Topics in Algebra. Wiley, London (1975) · Zbl 1230.00004
[37] Strang, G.: Linear Algebra and Its Applications, 4th Edition. Cengage Learning (2006) · Zbl 0338.15001
[38] Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) · Zbl 0474.34002
[39] Raina, G.: Local bifurcation analysis of some dual congestion control algorithms. IEEE Trans. Autom. Control 50, 1135-1146 (2005) · Zbl 1365.34122 · doi:10.1109/TAC.2005.852566
[40] Wright, E.M.: The stability of solutions of non-linear difference-differential equations. Proc. R. Soc. Edinb. Sect. A 63, 18-26 (1950) · Zbl 0038.25101
[41] Michiels, W., Niculescu, S-I.: Stability and stabilization of time-delay systems: an eigenvalue-based approach. In: Advances in Design and Control. SIAM, Philadelphia (2007) · Zbl 1140.93026
[42] Mazanov, A., Tognetti, K.P.: Taylor series expansion of delay differential equations: a warning. J. Theor. Biol. 46, 271-282 (1974) · doi:10.1016/0022-5193(74)90152-0
[43] Driver, R.D.: Ordinary and Delay Differential Equations. Springer, London (1977) · Zbl 0374.34001 · doi:10.1007/978-1-4684-9467-9
[44] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer, Dordrecht (1992) · Zbl 0752.34039 · doi:10.1007/978-94-015-7920-9
[45] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topologies and time-delays. IEEE Trans. Autom. Control 49, 1520-1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[46] Deb, S., Srikant, R.: Global stability of congestion controllers for the Internet. IEEE Trans. Autom. Control 48, 1055-1060 (2003) · Zbl 1364.93560 · doi:10.1109/TAC.2003.812809
[47] Brauer, F.: Decay rates for solutions of a class of differential-difference equations. SIAM J. Math. Anal. 10, 783-788 (1979) · Zbl 0417.34114 · doi:10.1137/0510074
[48] Rudin, W.: Real and complex analysis. In: Tata McGraw Hill Publications, Third Edition (1987) · Zbl 0925.00005
[49] Kamath, G.K., Jagannathan, K., Raina, G.: Stability, convergence and Hopf bifurcation analyses of the classical car-following model. arXiv preprint arXiv:1607.08779 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.