×

Recovery of material parameters in transversely isotropic media. (English) Zbl 1437.74009

The authors discuss some elastic properties of transversely isotropic materials. The main result is that the varying symmetry axis can be locally recovered. To recover these elastic parameters one needs to know some interrelationships between them, that can be deduced from the geometric model used in the description. The mathematical setting is indeed a background Riemannian metric (usually the Euclidean metric). The first theorem states that under some convexity assumptions, some parameters are determined by the qSH wave travel times (or qSH lens relations in the global case). The authors also prove additional results for the remaining parameters, that depends on the knowledge of qP and pSV travel data.
The main application of the methods developed in this paper concerns seismic tomography, due to the anisotropy detected in Earth’s interior.

MSC:

74J05 Linear waves in solid mechanics
74B20 Nonlinear elasticity
74E10 Anisotropy in solid mechanics
74L05 Geophysical solid mechanics
53C80 Applications of global differential geometry to the sciences

References:

[1] Auld, Ba, Acoustic Fields and Waves in Solids (1973), New York: Wiley, New York
[2] Chapman, Ch, Fundamentals of Seismic Wave Propagation (2004), Cambridge: Cambridge University Press, Cambridge
[3] Dahl, M.: A brief introduction to Finsler geometry. https://math.aalto.fi/ fdahl/finsler/finsler.pdf, 2006
[4] Digby, Pj, The effective elastic moduli of porous granular rocks, J. Appl. Mech., 48, 803-808 (1981) · Zbl 0468.73128 · doi:10.1115/1.3157738
[5] Eshelby, Jd, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 241, 1226, 376-396 (1957) · Zbl 0079.39606
[6] Eshelby, Jd, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 252, 1271, 561-569 (1959) · Zbl 0092.42001
[7] Garnero, Ej; Moore, Mm, Isotropy or weak vertical transverse isotropy in D” beneath the Atlantic Ocean, J. Geophys. Res., 109, B08308 (2004) · doi:10.1029/2004JB003004
[8] Guillemin, V.; Uhlmann, G., Oscillatory integrals with singular symbols, Duke Math. J., 48, 1, 251-267 (1981) · Zbl 0462.58030 · doi:10.1215/S0012-7094-81-04814-6
[9] Hornby, Be; Schwartz, Lm; Hudson, Ja, Anisotropic effective-medium modeling of the elastic properties of shales, Geophysics, 59, 10, 1570-1583 (1994) · doi:10.1190/1.1443546
[10] Melrose, Rb, Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidian Spaces (1994), New York: Marcel Dekker, New York
[11] Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math., 65(1), 71-83, 1981/82 · Zbl 0471.53030
[12] Norris, An; Callegari, Aj; Sheng, P., A generalized differential effective medium theory, J. Mech. Phys. Solids, 33, 6, 525-543 (1985) · Zbl 0579.73114 · doi:10.1016/0022-5096(85)90001-8
[13] Payton, Rg, Elastic Wave Propagation in Transversely Isotropic Media (1983), The Hague: Martinus Nijhoff Publishers, The Hague · Zbl 0574.73023
[14] Romanowicz, B.; Wenk, H-R, Anisotropy in the deep Earth, Phys. Earth Planet. Inter., 269, 58-90 (2017) · doi:10.1016/j.pepi.2017.05.005
[15] Schoenberg, M.; Muir, F., A calculus for finely layered anisotropic media, Geophysics, 54, 5, 581-589 (1989) · doi:10.1190/1.1442685
[16] Schoenberg, M.; De Hoop, Mv, Approximate dispersion relations for qP-qSV waves in transversely isotropic media, Geophysics, 65, 919-933 (2000) · doi:10.1190/1.1444788
[17] Silver, P., Seismic anisotropy beneath the continents: probing the depths of geology, Annu. Rev. Earth Planet. Sci., 24, 385-432 (1996) · doi:10.1146/annurev.earth.24.1.385
[18] Stefanov, P.; Uhlmann, G., Rigidity for metrics with the same lengths of geodesics, Math. Res. Lett., 5, 1-2, 83-96 (1998) · Zbl 0934.53031 · doi:10.4310/MRL.1998.v5.n1.a7
[19] Stefanov, P.; Uhlmann, G.; Vasy, A., Boundary rigidity with partial data, J. Am. Math. Soc., 29, 2, 299-332 (2016) · Zbl 1335.53055 · doi:10.1090/jams/846
[20] Stefanov, P., Uhlmann, G., Vasy, A.: Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge. 2017 Preprint, arXiv:1702.03638 · Zbl 1482.53056
[21] Thomsen, L., Weak elastic anisotropy, Geophysics, 51, 1954-1966 (1986) · doi:10.1190/1.1442051
[22] Tsvankin, I., Seismic Signatures and Analysis of Reflection Data in Anisotropic Media (2001), Amsterdam: Elsevier Science Publishers, Amsterdam
[23] Uhlmann, G.; Vasy, A., The inverse problem for the local geodesic ray transform, Invent. Math., 205, 1, 83-120 (2016) · Zbl 1350.53098 · doi:10.1007/s00222-015-0631-7
[24] Walton, K., The effective moduli of a random packing of spheres, J. Mech. Phys. Solids, 33, 213-226 (1987) · Zbl 0601.73117 · doi:10.1016/0022-5096(87)90036-6
[25] Zhang, S.; Karato, S-I, Lattice preferred orientation of olivine aggregates deformed in simple shear, Nature, 375, 774-777 (1995) · doi:10.1038/375774a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.