×

Principal vectors and equivalent mass descriptions for the equations of motion of planar four-bar mechanisms. (English) Zbl 1437.70002

Summary: The use of principal points and principal vectors in the formulation of the equations of motion of a general 4R planar four-bar linkage is shown with two kinds of methods, one that opens kinematic loops and one that does not. The opened kinematic loop approach analyses the moving links as a system with a tree connectivity, introducing reaction forces for closing the loops. Compared with the conventional Newton-Euler method, this approach results in fewer equations and constraint forces, whereas the mass matrix entries remain meaningful, but there is a stronger coupling between the equations. Two equivalent mass formulations for the closed kinematic loop approach are presented, which need not open the loop and introduce loop constraint forces in the equations of motion. With the method of complex joint masses, the mass of the links closing the loops is represented by real and virtual equivalent masses, defining the principal points. The principle of virtual work with the inclusion of inertia terms is used to derive the equations of motion. As an example the dynamic balance conditions of the four-bar linkage are derived. With the method of the equivalent mass matrix it is shown how a constant mass matrix can be used to describe the dynamics of binary links with an arbitrary mass distribution. A four-bar linkage could be modelled with only three truss elements instead of the conventional result with three or more beam elements, which gives a significant reduction of the computational complexity.

MSC:

70B15 Kinematics of mechanisms and robots

Software:

SPACAR

References:

[1] Fischer, O., Die Arbeit der Muskeln und die lebendige Kraft des menschlichen Körpers, Abh. Math.-Phys. Cl. K. Sächs. Ges. Wiss., 20, 1-84 (1893) · JFM 25.1455.03
[2] Fischer, O., Theoretische Grundlagen für eine Mechanik der lebenden Körper, mit speziellen Anwendungen auf den Menschen sowie auf einige Bewegungsvorgänge an Machinen, Möglichst elementarer und anschaulicher Weise dargestellt (1906), Leipzig: B. G. Teubner, Leipzig · JFM 37.0757.01
[3] Van Der Wijk, V.; Herder, J. L.; Koetsier, T.; Ceccarelli, M., The work of Otto Fischer and the historical development of his method of principal vectors for mechanism and machine science, Explorations in the History of Machines and Mechanisms, 521-534 (2012), Dordrecht: Springer, Dordrecht
[4] Wittenburg, J., Dynamics of Systems of Rigid Bodies (1977), Stuttgart: B. G. Teubner, Stuttgart · Zbl 0363.70004
[5] van der Wijk, V.: Methodology for analysis and synthesis of inherently force and moment-balanced mechanisms. Dissertation, University of Twente, Enschede (2014)
[6] Van Der Wijk, V., Design and analysis of closed-chain principal vector linkages for dynamic balance with a new method for mass equivalent modeling, Mech. Mach. Theory, 107, 283-304 (2017) · doi:10.1016/j.mechmachtheory.2016.09.010
[7] Van Der Wijk, V.; Krut, S.; Pierrot, F.; Herder, J. L., Design and experimental evaluation of a dynamically balanced redundant planar 4-RRR parallel manipulator, Int. J. Robot. Res., 32, 744-759 (2013) · doi:10.1177/0278364913484183
[8] Feudenstein, F., Quasi lumped-parameter analysis of dynamical systems, Proceedings of the Third Applied Mechanism Conference, 27-1-27-4 (1973)
[9] Yao, J.; Smith, M. R., An improved complex mass method for force balancing of planar linkages, Mech. Mach. Theory, 28, 417-425 (1993) · doi:10.1016/0094-114X(93)90080-F
[10] García De Jalón, J.; Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems, the Real-Time Challenge (1994), New York: Springer, New York
[11] Jonker, J. B.; Meijaard, J. P.; Schiehlen, W., SPACAR—computer program for dynamic analysis of flexible spatial mechanisms and manipulators, Multibody Systems Handbook, 123-143 (1990), Heidelberg: Springer, Heidelberg
[12] Meijaard, J. P.; Van Der Wijk, V., Analytic modelling of the dynamics of the four-bar mechanism: a comparison of some methods, Proceedings of the ASME 2018 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (2018), New York: ASME, New York
[13] Meijaard, J. P.; Van Der Wijk, V.; Corves, B.; Wenger, P.; Hüsing, M., The equations of motion of a four-bar linkage with principal vectors and virtual work, EuCoMeS 2018, 79-87 (2019), Cham: Springer Nature Switzerland, Cham
[14] Paul, B., Kinematics and Dynamics of Planar Machinery (1979), Englewood Cliffs: Prentice-Hall, Englewood Cliffs
[15] Wilson, C. E.; Sadler, J. P.; Michels, W. J., Kinematics and Dynamics of Machinery (1983), New York: Harper-Collins, New York
[16] Cohen, H.; Muncaster, R. G., The Theory of Pseudo-Rigid Bodies (1988), New York: Springer, New York · Zbl 0687.70001
[17] Lakes, R. S., Negative-Poisson’s-ratio materials: auxetic solids, Annu. Rev. Mater. Res., 47, 63-81 (2017) · doi:10.1146/annurev-matsci-070616-124118
[18] van der Werff, K.: Kinematic and dynamic analysis of mechanisms, a finite element approach. Dissertation, Delft University Press, Delft (1977) · Zbl 0365.70003
[19] Berkof, R. S., Complete force and moment balancing of inline four-bar linkages, Mech. Mach. Theory, 8, 397-410 (1973) · doi:10.1016/0094-114X(73)90076-1
[20] Schiehlen, W., Multibody Systems Handbook (1990), Heidelberg: Springer, Heidelberg · Zbl 0703.70002
[21] Meijaard, J. P.; Kecskeméthy, A.; Geu Flores, F., Modelling rigid and flexible bodies with truss elements, Multibody Dynamics 2019, 275-282 (2020), Cham: Springer Nature Switzerland, Cham · Zbl 1493.74058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.