×

Unconditional \(L_\infty\) convergence of a compact ADI scheme for coupled nonlinear Schrödinger system. (English) Zbl 1437.65092

A three-level compact ADI scheme is developed to solve the two-dimensional coupled nonlinear Schrödinger (CNLS) system for which, using \(L_{\infty}\) estimates, it is proved that the new scheme is second-order accurate in time variable and fourth-order accurate in space variable, and stable. Numerical experiments demonstrate that the method is highly accurate and efficient. It can be directly extended to the three-dimensional CNLS system and multi-dimensional nonlinear Schödinger-type equations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Aydin, A.; Karasözen, B., Symplectic and multisymplectic methods for the coupled nonlinear Schrödinger equations with periodic solutions, Comput. Phys. Commun., 177, 7, 566-583 (2007) · Zbl 1196.65139
[2] Aydin, A.; Karasözen, B., Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions, Int. J. Comput. Math., 86, 864-882 (2009) · Zbl 1165.65084
[3] Borhanifar, A.; Abazari, R., Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Opt. Commun., 283, 2026-2031 (2010)
[4] Chen, J.; Zhang, L., Numerical approximation of solution for the coupled nonlinear Schrödinger equations, Acta Math. Appl. Sin. Engl. Ser., 33, 2, 435-450 (2017) · Zbl 1368.65132
[5] Chien, C.; Huang, H.; Jeng, B.; Li, Z., Two-grid discretization schemes for nonlinear Schrödinger equations, J. Comput. Appl. Math., 214, 549-571 (2008) · Zbl 1135.65361
[6] Ferreira, L.; Villamizar-Roa, E., Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions, Physica D, 241, 534-542 (2012) · Zbl 1236.35164
[7] Gao, Y.; Mei, L., Implicit-explicit multistep methods for general two-dimensional nonlinear Schrödinger equations, Appl. Numer. Math., 109, 41-60 (2016) · Zbl 1348.65142
[8] Gauckler, L.; Lubich, C., Nonlinear Schrödinger equations and their spectral discretizations over long times, Found. Comput. Math., 10, 141-169 (2010) · Zbl 1194.37121
[9] Griffiths, D., Introduction to Quantum Mechanics (2005), Pearson Prentice Hall
[10] Hasegawa, A., Optical Solitons in Fibers (1989), Springer-Verlag: Springer-Verlag Berlin
[11] Hirsh, R., High order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19, 90-109 (1975) · Zbl 0326.76024
[12] Ismail, M., Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comput. Simul., 78, 532-547 (2008) · Zbl 1145.65075
[13] Ismail, M., A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation, Appl. Math. Comput., 196, 273-284 (2008) · Zbl 1133.65063
[14] Ismail, M.; Alamri, S., Highly accurate finite difference method for coupled nonlinear Schrödinger equation, Int. J. Comput. Math., 81, 333-351 (2004) · Zbl 1058.65090
[15] Ismail, M.; Ashi, H.; Al-Rakhemy, F., ADI method for solving the two-dimensional coupled nonlinear Schrödinger equation, (AIP Conference Proceedings, vol. 1648 (2015)), Article 050008 pp.
[16] Ismail, M.; Taha, T., A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation, Math. Comput. Simul., 74, 302-311 (2007) · Zbl 1112.65079
[17] Li, J.; Sun, Z.; Zhao, X., A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55, 805-826 (2012) · Zbl 1262.65106
[18] Liao, H.; Sun, Z., A two-level compact ADI method for solving second-order wave equations, Int. J. Comput. Math., 90, 7, 1471-1488 (2013) · Zbl 1279.65099
[19] Liao, H.; Sun, Z.; Shi, H.; Wang, T., Convergence of compact ADI method for solving linear Schrödinger equations, Numer. Methods Partial Differ. Equ., 28, 5, 1598-1619 (2012) · Zbl 1259.65135
[20] Mei, C., The Applied Dynamics of Ocean Waves (1989), World Scientific: World Scientific Singapore · Zbl 0991.76003
[21] Ohta, M., Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal., 26, 933-939 (1996) · Zbl 0860.35011
[22] Sun, J.; Qin, M., Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system, Comput. Phys. Commun., 155, 221-235 (2003) · Zbl 1196.65195
[23] Sun, W.; Wang, J., Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D, J. Comput. Appl. Math., 317, 685-699 (2017) · Zbl 1357.65148
[24] Sun, Z., Numerical Methods of the Partial Differential Equations (2005), Science Press: Science Press Beijing
[25] Sun, Z.; Zhao, D., On the \(L_\infty\) convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 59, 3286-3300 (2010) · Zbl 1198.65173
[26] Tian, Z.; Yu, P., High-order compact ADI (HOC-ADI) method for solving unsteady 2D Schrödinger equation, Comput. Phys. Commun., 181, 861-868 (2010) · Zbl 1205.65240
[27] Wang, T.; Guo, B.; Zhang, L., New conservative difference schemes for a coupled nonlinear Schrödinger system, Appl. Math. Comput., 217, 1604-1619 (2010) · Zbl 1205.65242
[28] Wang, T.; Nie, T.; Zhang, L.; Chen, F., Numerical simulation of nonlinearly coupled Schrödinger systems: a linearly uncoupled finite difference scheme, Math. Comput. Simul., 79, 607-621 (2008) · Zbl 1202.65116
[29] Wang, T.; Zhao, X.; Jiang, J., Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions, Adv. Comput. Math., 44, 477-503 (2018) · Zbl 1448.65122
[30] Yew, A., Stability analysis of multipulses in nonlinear Schrödinger equations, Indiana Univ. Math. J., 49, 1079-1124 (2000) · Zbl 0978.35057
[31] Zhou, Y., Application of Discrete Functional Analysis to the Finite Difference Method (1990), International Academic Publishers
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.