×

Circulant preconditioners for a kind of spatial fractional diffusion equations. (English) Zbl 1437.65013

Summary: In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in \((\frac{1}{2},1)\). The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.

MSC:

65F08 Preconditioners for iterative methods
35R11 Fractional partial differential equations
65F10 Iterative numerical methods for linear systems
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211-240 (2001) · doi:10.1023/A:1006733002131
[2] Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418-477 (2002) · Zbl 1015.65018 · doi:10.1006/jcph.2002.7176
[3] Chan, R., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comput. 10, 104-119 (1989) · Zbl 0666.65030 · doi:10.1137/0910009
[4] Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comput. 9, 766-771 (1988) · Zbl 0646.65042 · doi:10.1137/0909051
[5] Chen, C., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256-273 (2009) · Zbl 1167.65419 · doi:10.1016/j.apm.2007.11.005
[6] Ciesielski, M., Klimek, M., Blaszczyk, T.: The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion. J. Comput. Appl. Math. 317, 573-588 (2017) · Zbl 1357.65103 · doi:10.1016/j.cam.2016.12.014
[7] Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262-279 (2016) · Zbl 1352.65305 · doi:10.1016/j.jcp.2015.11.061
[8] Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586-595 (2011) · Zbl 1211.65112 · doi:10.1016/j.jcp.2010.10.007
[9] Gu, X., Huang, T., Ji, C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Comput. Phys. 72, 957-985 (2017) · Zbl 1379.65062
[10] Gu, X., Huang, T., Zhao, X., Li, H., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73-86 (2015) · Zbl 1302.65212 · doi:10.1016/j.cam.2014.08.011
[11] Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[12] Jin, X.: Preconditioning Techniques for Teoplitz Systems. Higher Education Press, Beijing (2010)
[13] Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, 2665-2700 (2015) · Zbl 1321.65127 · doi:10.1090/mcom/2960
[14] Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272-2294 (2014) · Zbl 1310.65126 · doi:10.1137/13093933X
[15] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[16] Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524-526 (2000) · doi:10.1038/35000537
[17] Klimek, M., Agrawal, O.P.: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66, 795-812 (2013) · Zbl 1348.34018 · doi:10.1016/j.camwa.2012.12.011
[18] Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719-736 (2005) · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[19] Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Sci. Comput. 242, 715-725 (2013) · Zbl 1297.65095
[20] Li, M., Gu, X., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional schrödinger equations. J. Comput. Phys. 358, 256-282 (2018) · Zbl 1382.65320 · doi:10.1016/j.jcp.2017.12.044
[21] Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commum. Comput. Phys. 8, 1016-1051 (2010) · Zbl 1364.35424
[22] Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equations. J. Comput. Phys. 256, 109-117 (2014) · Zbl 1349.65314 · doi:10.1016/j.jcp.2013.07.040
[23] Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. & Appl. 38, 1580-1614 (2017) · Zbl 1381.65030 · doi:10.1137/17M1115447
[24] Lynch, V., Carreras, B., Castillo-Negrete, D., Ferreira-Mejias, K., Hicks, H.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406-421 (2003) · Zbl 1047.76075 · doi:10.1016/j.jcp.2003.07.008
[25] Magin, R.L.: Fractional Calculus in Bioengineering. Redding, Begell House (2006)
[26] Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243-261 (2016) · Zbl 1352.65395 · doi:10.1016/j.jcp.2015.11.047
[27] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[28] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[29] Ng, M.: Iterative Methods for Toeplitz Systems. Numerical mathematics and scientific computation. Oxford University Press, New York (2004) · Zbl 1059.65031
[30] Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698-A2719 (2014) · Zbl 1314.65112 · doi:10.1137/130931795
[31] Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806-A2826 (2016) · Zbl 1348.65067 · doi:10.1137/15M1030273
[32] Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693-703 (2012) · Zbl 1243.65117 · doi:10.1016/j.jcp.2011.10.005
[33] Pang, H., Sun, H.: Fast numerical Contour integral method for fractional diffusion equations. J. Sci. Comput. 66, 41-66 (2016) · Zbl 1351.65058 · doi:10.1007/s10915-015-0012-9
[34] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[35] Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749-755 (2002) · Zbl 1001.91033 · doi:10.1016/S0378-4371(02)01048-8
[36] Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[37] Tadjeran, C., Meerchaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[38] Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444-A2458 (2012) · Zbl 1256.35194 · doi:10.1137/12086491X
[39] Wang, H., Wang, K.: An O(Nlog2n)\( \mathcal{O}(N \log^2n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830-7839 (2011) · Zbl 1229.65165 · doi:10.1016/j.jcp.2011.07.003
[40] Wang, H., Wang, K., Sircar, T.: A direct O(nlog2N)\( \mathcal{O}(n\log^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095-8104 (2010) · Zbl 1198.65176 · doi:10.1016/j.jcp.2010.07.011
[41] Wheatcraft, S.W., Meerchaert, M.M.: Fractional conservation of mass. Adv. Water Resour. 31, 1377-1381 (2008) · doi:10.1016/j.advwatres.2008.07.004
[42] Xu, Y., Sun, H., Sheng, Q.: On variational properties of balanced central fractional derivatives. Int. J. Comput. Math. 95, 1195-1209 (2018) · Zbl 1513.65039 · doi:10.1080/00207160.2017.1398324
[43] Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130-143 (2015) · Zbl 1352.65304 · doi:10.1016/j.jcp.2015.07.001
[44] Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45-66 (2013) · Zbl 1278.65130 · doi:10.1007/s10915-012-9661-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.