×

Discrete channel surfaces. (English) Zbl 1437.53010

The authors present a definition of discrete channel surfaces in Lie sphere geometry, which reflects several properties for smooth channel surfaces. Various sets of data are associated with this notion that may be used to reconstruct the underlying particular discrete Legendre map. As an application, they investigate isothermic discrete channel surfaces and prove a discrete version of Vessiot’s theorem (Theorem 4.5).
The paper is organized in four sections containing the following aspects: Introduction (smooth channel surfaces and problems with the discretization, preliminaries, discrete Legendre maps), Discrete channel surfaces (Lie geometric characterization of discrete channel surfaces, Möbius geometric properties of a discrete channel surface, a discrete channel surface as the envelope of a sphere curve, discrete Dupin cyclides), A channel surface from two prescribed curvature lines, Discrete isothermic channel surfaces (discrete surfaces of revolution, cylinders and cones, Vessiot’s theorem, Examples).
Other works of the auhtors directly connected to this topic are: the first author’s book [Introduction to Möbius differential geometry. Cambridge: Cambridge University Press (2003; Zbl 1040.53002)] and the papers [first author et al., Beitr. Algebra Geom. 60, No. 1, 39–55 (2019; Zbl 1433.53010); F. Burstall et al., Nagoya Math. J. 231, 55–88 (2018; Zbl 1411.53007); M. Pember and G. Szewieczek, Beitr. Algebra Geom. 59, No. 4, 779–796 (2018; Zbl 1408.53014)].

MSC:

53A40 Other special differential geometries
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
53A70 Discrete differential geometry

References:

[1] Blaschke, W., Vorlesungen über Differentialgeometrie III (1929), Berlin: Springer Grundlehren XXIX, Berlin · JFM 55.0390.12
[2] Bo, Pengbo; Pottmann, Helmut; Kilian, Martin; Wang, Wenping; Wallner, Johannes, Circular arc structures, ACM Transactions on Graphics, 30, 4, 1 (2011) · doi:10.1145/2010324.1964996
[3] Bobenko, A., Pottmann, H., Rörig, T.: Multi-Nets. Classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles. EPrint arXiv:1802.05063, (2018) · Zbl 1440.53012
[4] Bobenko, A.; Huhnen-Venedey, E., Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides, Geom. Dedicata, 159, 207-237 (2012) · Zbl 1404.53013 · doi:10.1007/s10711-011-9653-5
[5] Bobenko, A.; Suris, Y., Isothermic surfaces in sphere geometries as Moutard nets, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 463, 2088, 3171-3193 (2007) · Zbl 1142.53014 · doi:10.1098/rspa.2007.1902
[6] Bobenko, A.; Suris, Y., Discrete Differential Geometry: Integrable Structure. Graduate Studies in Mathematics (2008), Providence: Amer. Math. Soc., Providence · Zbl 1158.53001
[7] Bobenko, A.; Pottmann, H.; Wallner, J., A curvature theory for discrete surfaces based on mesh parallelity, Math. Ann., 348, 1, 1-24 (2010) · Zbl 1219.51014 · doi:10.1007/s00208-009-0467-9
[8] Burstall, F.; Hertrich-Jeromin, U.; Rossman, W., Discrete linear Weingarten surfaces, Nagoya Math. J., 231, 5588 (2018) · Zbl 1411.53007 · doi:10.1017/nmj.2017.11
[9] Burstall, F.; Hertrich-Jeromin, U.; Lara Miro, M., Ribaucour coordinates, Beiträge zur Algebra und Geometrie, 60, 1, 39-55 (2019) · Zbl 1433.53010 · doi:10.1007/s13366-018-0391-9
[10] Cecil, T., Lie sphere geometry. With applications to submanifolds (2008), New York: Springer, New York · Zbl 1134.53001
[11] Dajczer, M.; Tojeiro, R., An extension of the classical Ribaucour transformation, Proc. Lond. Math. Soc. (3), 85, 1, 211-232 (2002) · Zbl 1028.53057 · doi:10.1112/S0024611502013552
[12] Druoton, L.; Langevin, R.; Garnier, L., Blending canal surfaces along given circles using Dupin cyclides, Int. J. Comput. Math., 91, 3, 641-660 (2014) · Zbl 1297.68237 · doi:10.1080/00207160.2013.804513
[13] Foufou, S.; Garnier, L., Dupin Cyclide Blends Between Quadric Surfaces for Shape Modeling. Computer Graphics Forum (2004), Oxford: The Eurographics Association and Blackwell Publishing, Oxford
[14] Garcia, R.; Llibre, J.; Sotomayor, J., Lines of principal curvature on canal surfaces in \(\mathbb{R}^3\), Anais da Acad. Brasileira de Ciencias, 78, 405-415 (2006) · Zbl 1106.53024 · doi:10.1590/S0001-37652006000300002
[15] Hertrich-Jeromin, U., Introduction to Möbius Differential Geometry (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1040.53002
[16] Monge, G., Application de l’analyse a la géométrie (1850), Paris: Bachelier, Paris
[17] Pember, M.; Szewieczek, G., Channel surfaces in Lie sphere geometry, Beitr Algebra Geom, 59, 779-796 (2018) · Zbl 1408.53014 · doi:10.1007/s13366-018-0394-6
[18] Vessiot, E., Leçons de Gèométrie Supérieure. Librarie Scientifique (1919), Paris: J. Hermann, Paris · JFM 47.0582.06
[19] Vessiot, E., Contribution à la géométrie conforme. Théorie des surfaces, Bull. Soc. Math. France, 54, 139-179 (1926) · JFM 53.0700.04 · doi:10.24033/bsmf.1100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.