×

Christoffel transformation for a matrix of bi-variate measures. (English) Zbl 1437.42038

Bi-orthogonal polynomial systems are in the meantime well-known generalisations of classical orthogonal polynomials from numerical analysis and approximation theory (used, e.g., for Gauß-quadrature formulae). They are applied in this paper in matrix form, so even more general than the already large class of biorthogonal orthogonal polynomials. The authors consider in particular bi-orthogonal matrix orthogonal Laurent polynomials and study pertubations of (for instance) positive definite linear functionals on infinite subsets of \(\mathbb R\) (cf. functionals studied by E. B. Christoffel [J. Reine Angew. Math. 55, 61–82 (1858; ERAM 055.1450cj)] for Christoffel matrix transformations, J. Geronimus [Izv. Akad. Nauk SSSR, Ser. Mat. 4, 215–228 (1940; Zbl 0025.04104)] and V. B. Uvarov [Dokl. Akad. Nauk SSSR 126, 33–36 (1959; Zbl 0087.06102); U.S.S.R. Comput. Math. Math. Phys. 9, No. 6, 25–36 (1972; Zbl 0231.42013)]). The pertubations and the original linear functionals are to be compared with each other, for which several methods are available, mostly using a variety of matrix factorisations. The theory becomes more complicated if the infinite subsets of the real line are replaced by unit circles. In this article in particular, Christoffel matrix transformations on double circles on compactly supported measures are analysed in much detail.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
15A23 Factorization of matrices
30C10 Polynomials and rational functions of one complex variable
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Álvarez-Fernández, C., Ariznabarreta, G., García-Ardila, J.C., Mañas, M., Marcellán, F.: Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. 2017(5), 1285-1341 (2017) · Zbl 1405.42047
[2] Ariznabarreta, G., García-Ardila, J.C., Mañas, M., Marcellán, F.: Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations. J. Phys. A: Math. Theor. 51, 205204 (2018) · Zbl 1401.37073
[3] Ariznabarreta, G., García-Ardila, J.C., Mañas, M., Marcellán, F.: Matrix biorthogonal polynomials on the real line Geronimus transformations. J. Bull. Math. Sci. (2018). https://doi.org/10.1007/s13373-018-0128-y · Zbl 1401.37073 · doi:10.1007/s13373-018-0128-y
[4] Álvarez-Nodarse, R., Durán, A.J., de los Ríos, A.Martínez: Orthogonal matrix polynomials satisfying second order difference equation. J. Approx. Theory 169, 40-55 (2013) · Zbl 1300.33011
[5] Alvarez, C., Mañas, M.: Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies. Adv. Math. 240, 132-193 (2013) · Zbl 1293.30077
[6] Ariznabarreta, G., Mañas, M.: Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems. Adv. Math. 264, 396-463 (2014) · Zbl 1305.33018
[7] Ariznabarreta, G., Mañas, M., Toledano, A.: CMV biorthogonal Laurent polynomials: Christoffel formulas for Christoffel and Geronimus perturbations. Stud. Appl. Math. 140(3), 333-400 (2018) · Zbl 1391.42030
[8] Ariznabarreta, G., Mañas, M.: Christoffel transformations for multivariate orthogonal polynomials. J. Approx. Theory 225, 242-283 (2018) · Zbl 1387.42028
[9] Ariznabarreta, G., Mañas, M.: Multivariate orthogonal Laurent polynomials and integrable systems (2015). arXiv:1506.08708v2 · Zbl 1490.37090
[10] Bueno, M.I., Marcellán, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215-242 (2004) · Zbl 1055.42016
[11] Bueno, M.I., Marcellán, F.: Polynomial perturbations of bilinear functionals and Hessenberg matrices. Linear Algebra Appl. 414, 64-83 (2006) · Zbl 1134.42015
[12] Buhmann, M.D., Iserles, A.: On orthogonal polynomials transformed by the QR algorithm. J. Comput. Appl. Math. 43(1-2), 117-134 (1992) · Zbl 0764.65008
[13] Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: Matrix valued Szegő polynomials and quantum random walks. Commun. Appl. Math. 63(4), 404-507 (2010) · Zbl 1186.81036
[14] Cantero, M.J., Marcellán, F., Moral, L., Velázquez, L.: Darboux transformations for CMV matrices. Adv. Math. 208, 122-206 (2016) · Zbl 1345.42029
[15] Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29-56 (2003) · Zbl 1022.42013
[16] Castillo, K., Garza, L., Marcellán, F.: Laurent polynomial perturbation of linear functionals. An inverse problem. Electron. Trans. Numer. Anal. 36, 83-98 (2010) · Zbl 1191.42012
[17] Castillo, K., Garza, L., Marcellán, F.: Linear spectral transformations, Hessenberg matrices and orthogonal polynomials. Rend. Circ. Mat. Palermo 82(2), 3-26 (2010) · Zbl 1470.42050
[18] Castro, M.M., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying first order differential equations: a collection of instructive examples. J. Nonlinear Math. Phys. 4, 63-76 (2005) · Zbl 1100.42015
[19] Chihara, T.S.: An introduction to orthogonal polynomials. In: Mathematics and Its Applications Series, vol. 13. Gordon and Breach Science Publishers, New York (1978) · Zbl 0389.33008
[20] Christoffel, E.B.: Über die Gaussische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55, 61-82 (1858) · ERAM 055.1450cj
[21] Cooke, R.G.: Infinite Matrices and Sequence Spaces. Dover Publications Inc, New York (1965) · Zbl 0132.28901
[22] Damanik, D., Pushnitski, A., Simon, B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1-85 (2008) · Zbl 1193.42097
[23] Delsarte, P., Genin, Y.V., Kamp, Y.G.: Orthogonal polynomial matrices on the unit circle. IEEE Trans. Circuits Syst. 25, 149-160 (1978) · Zbl 0408.15018
[24] Derevyagin, M., García-Ardila, J.C., Marcellán, F.: Multiple Geronimus transformations. Linear Algebra Appl. 454, 158-183 (2014) · Zbl 1295.42007
[25] Derevyagin, M., Marcellán, F.: A note on the Geronimus transformation and Sobolev orthogonal polynomials. Numer. Algorithms 67, 271-287 (2014) · Zbl 1306.42043
[26] Dette, H., Studden, W.J.: Matrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations. Linear Algebra Appl. 432, 1609-1626 (2010) · Zbl 1181.42024
[27] Durán, A.J.: Matrix inner product having a matrix symmetric second order differential operator. Rocky Mt. J. Math. 27, 585-600 (1997) · Zbl 0899.34050
[28] Durán, A.J., Grünbaum, F.A.: A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178, 169-190 (2005) · Zbl 1060.42017
[29] Fenyo, S.: Modern Mathematical Methods In Technology. Elsevier, New York (1975) · Zbl 0297.65001
[30] Garza, L., Marcellán, F.: Linear spectral transformations and Laurent polynomials. Mediterr. J. Math. 6, 273-289 (2009) · Zbl 1189.42011
[31] Garza, L., Marcellán, F.: Verblunsky parameters and linear spectral transformations. Methods Appl. Anal. 16, 69-86 (2009) · Zbl 1176.42021
[32] Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193, 56-141 (2005) · Zbl 1079.15007
[33] Geronimo, J.S.: Matrix orthogonal polynomials on the unit circle. J. Math. Phys. 22, 1359-1365 (1981) · Zbl 0505.42019
[34] Geronimus, Ya.L.: On polynomials orthogonal with regard to a given sequence of numbers and a theorem by W. Hahn, Comm. Inst. Sci. Math. Mec. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 17, 3-18 (1940). Izv. Akad. Nauk SSSR 4, 215-228 (1940) (in Russian) · JFM 66.0315.03
[35] Godoy, E., Marcellán, F.: An analogue of the Christoffel formula for polynomial modification of a measure on the unit circle. Boll. Un. Mat. Ital. 5-A, 1-12 (1991) · Zbl 0728.33003
[36] Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials, Computer Science and Applied Mathematics. Academic Press, New York (1982) · Zbl 0482.15001
[37] Grünbaum, FA; Kolk, JAC (ed.); Ban, EP (ed.), The Darboux process and a noncommutative bispectral problem: some explorations and challenges, No. 292, 161-177 (2011), New York · Zbl 1263.34022
[38] Ismail, M.E.H., Ruedemann, R.W.: Relation between polynomials orthogonal on the unit circle with respect to different weights. J. Approx. Theory 71(1), 39-60 (1992) · Zbl 0752.33004
[39] Marcellán, F., Rodríguez, I.: A class of matrix orthogonal polynomials on the unit circle. Linear Algebra Appl. 121, 233-241 (1989) · Zbl 0681.33013
[40] Marcellán, F., Sansigre, G.: On a class of matrix orthogonal polynomials on the real line. Linear Algebra Appl. 181, 97-110 (1993) · Zbl 0769.15010
[41] Markus, A.S.: Introduction to the Spectral Theory of Polynomials Operator Pencil, Translated from the Russian by H. H. McFaden. Translation Edited by Ben Silver. With an Appendix by M. V. Keldysh. Translations of Mathematical Monographs, vol. 71. Amer. Math. Soc., Providence (1988) · Zbl 0678.47005
[42] McWhirter, J.G., Baxter, P.D., Cooper, T., Redif, S., Foster, J.: An EVD algorithm for para-Hermitian polynomial matrices. IEEE Trrans. Signal Process. 55(5), 2158-2169 (2007) · Zbl 1388.94021
[43] Miranian, L.: Matrix valued orthogonal polynomials on the real line: some extensions of the classical theory. J. Phys. A 38, 5731-5749 (2005) · Zbl 1080.33009
[44] Miranian, L.: Matrix valued orthogonal polynomials in the unit circle: some extensions of the classical theory. Can. Math. Bull. 52, 95-104 (2009) · Zbl 1181.42029
[45] Rodman, L.; Nevai, P. (ed.), Orthogonal matrix polynomials, No. 294, 345-362 (1990), Dordrecht · Zbl 0703.42022
[46] Simon, B.: Orthogonal Polynomials on the Unit Circle. American Mathematical Society Colloquium Publications Series, vol. 54. Amer. Math. Soc, Providence (2005) · Zbl 1082.42020
[47] Sinap, A., Van Assche, W.: Orthogonal matrix polynomials and applications. J. Comput. Appl. Math. 66, 25-52 (1996) · Zbl 0863.42018
[48] Uvarov, V.B.: Relation between polynomials orthogonal with different weights. Dokl. Akad. Nauk SSSR 126(1), 33-36 (1959). (in Russian) · Zbl 0087.06102
[49] Uvarov, V.B.: The connection between systems of polynomials that are orthogonal with respect to different distribution functions. USSR Comput. Math. Phys. 9, 25-36 (1969) · Zbl 0231.42013
[50] Yoon, G.: Darboux transforms and orthogonal polynomials. Bull. Korean Math. Soc. 39, 359-376 (2002) · Zbl 1025.33005
[51] Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67-86 (1997) · Zbl 0918.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.