×

On Carleman and observability estimates for wave equations on time-dependent domains. (English) Zbl 1437.35441

The author establishes new Carleman estimates for the wave equation using a geometric approach. It is noted that the main features of the derived observability inequalities are that they apply to a fully general class of time-dependent domains, with timelike moving boundaries, they apply to linear wave equations in any spatial dimension and with general time-dependent lower order coefficients, and they allow for smaller time-dependent regions of observations than allowed from existing Carleman estimate methods. The paper is rather extensive, its structure is as follows. First, the author defines the objects and notations to be used throughout the paper. Then, the main Careleman estimate is stated and proved. In the process, the author introduces the “warped” metric and establishes its basic properties. The next part of the paper is dedicated to the precise statements of the main observability inequalities. Finally, in the conclusive part, the author discusses some consequencess of the main observability results.

MSC:

35L05 Wave equation
93B05 Controllability
93B07 Observability
93B27 Geometric methods
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

References:

[1] S.Alexakis, A.Ionescu and S.Klainerman, ‘Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces’, Comm. Math. Phys.299 (2010) 89-127. · Zbl 1200.83059
[2] S.Alexakis, A.Ionescu and S.Klainerman, ‘Rigidity of stationary black holes with small angular momentum on the horizon’, Duke Math. J.163 (2014) 2603-2615. · Zbl 1311.35309
[3] S.Alexakis, V.Schlue and A.Shao, ‘Unique continuation from infinity for linear waves’, Adv. Math.286 (2016) 481-544. · Zbl 1329.35087
[4] S.Alexakis and A.Shao, ‘Global uniqueness theorems for linear and nonlinear waves’, J. Func. Anal.269 (2015) 3458-3499. · Zbl 1329.35007
[5] S.Alexakis and A.Shao, ‘On the profile of energy concentration at blow‐up points for subconformal focusing nonlinear waves’, Trans. Amer. Math. Soc.369 (2017) 5525-5542. · Zbl 1377.35199
[6] S. A.Avdonin and S. A.Ivanov, Families of exponentials. the method of moments in controllability problems for distributed parameter systems (Cambridge University Press, Cambridge, 1995). · Zbl 0866.93001
[7] C.Bardos and G.Chen, ‘Control and stabilization for the wave equation, part III: domain with moving boundary’, SIAM J. Control Optim.19 (1981) 123-138. · Zbl 0461.93038
[8] C.Bardos, G.Lebeau and J.Rauch, ‘Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary’, SIAM J. Control Optim.30 (1992) 1024-1065. · Zbl 0786.93009
[9] L.Baudouin, M.de Buhan and S.Ervedoza, ‘Global Carleman estimates for waves and applications’, Comm. Partial Differential Equations38 (2013) 823-859. · Zbl 1267.93027
[10] M. I.Belishev and Y. V.Kurylev, ‘To the reconstruction of a Riemannian manifold via its spectral data (BC‐method)’, Comm. Partial Differential Equations17 (1992) 767-804. · Zbl 0812.58094
[11] A. L.Bukhgeĭm and M. V.Klibanov, ‘Uniqueness in the large of a class of multidimensional inverse problems’, Dokl. Akad. Nauk260 (1981) 269-272.
[12] N.Burq, ‘Contrôle de l’équation des ondes dans des ouverts peu réguliers’, Asymptot. Anal.14 (1997) 157-191. · Zbl 0892.93009
[13] N.Burq and P.Gérard, ‘Condition nécessaire et suffisante pour la contrôlabilité exact des ondes’, C. R. Acad. Sci.325 (1997) 749-752. · Zbl 0906.93008
[14] A. P.Calderón, ‘Uniqueness in the Cauchy problem for partial differential equations’, Amer. J. Math.80 (1958) 16-36. · Zbl 0080.30302
[15] T.Carleman, ‘Sur un problème d’unicité pour les systèmes déquations aux dérivées partielles à deux variables indépendentes’, Ark. Mat. Astr. Fys.26 (1939) 1-9. · Zbl 0022.34201
[16] P.Chruściel and J.Costa, ‘On uniqueness of stationary vacuum black holes’, Astérisque321 (2008) 195-265. · Zbl 1183.83059
[17] L.Cui, Y.Jiang and Y.Wang, ‘Exact controllability for a one‐dimensional wave equation with the fixed endpoint control’, Bound. Value Probl. (2015) 2015:208. · Zbl 1338.35280
[18] B.Dacorogna, Direct methods in the calculus of variations (Springer, New York, 2008). · Zbl 1140.49001
[19] S.Dolecki and D. L.Russell, ‘A general theory of observation and control’, SIAM J. Control Optim.15 (1977) 185-220. · Zbl 0353.93012
[20] T.Duyckaerts, X.Zhang and E.Zuazua, ‘On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials’, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (2008) 1-41. · Zbl 1248.93031
[21] L. C.Evans, Partial differential equations (American Mathematical Society, Providence, RI, 2002). · Zbl 0997.00012
[22] X.Fu, J.Yong and X.Zhang, ‘Exact controllability for multidimensional semilinear hyperbolic equations’, SIAM J. Control Optim.46 (2007) 1578-1614. · Zbl 1143.93005
[23] A. V.Fursikov and O. Y.Imanuvilov, Controllability of evolution equations (Seoul National University, Seoul, 1996). · Zbl 0862.49004
[24] W.Green, S.Liu and M.Mitkovski, ‘A harmonic analysis proof of the boundary observability inequality for the wave equation and visco‐elastic equation’, Preprint, 2018, arXiv:1801.00339.
[25] L. F.Ho, ‘Observabilité frontière de l’équation des ondes’, C. R. Acad. Sci. Paris Sér. I Math.302 (1986) 443-446. · Zbl 0598.35060
[26] L.Hörmander, The analysis of linear partial differential operators IV: Fourier integral operators (Springer, Berlin-Heidelberg, 1985). · Zbl 0612.35001
[27] L.Hörmander, ‘On the uniqueness of the Cauchy problem under partial analyticity assumptions’, Geometric optics and related topics, Progress in Nonlinear Differential Equations Applications 32 (eds F.Colombini (ed.) and N.Lerner (ed.); Birkhäuser Boston, Boston, MA, 1997) 179-219. · Zbl 0907.35002
[28] O. Y.Imanuvilov and M.Yamamoto, ‘Global uniqueness and stability in determining coefficients of wave equations’, Comm. Partial Differential Equations26 (2001) 1409-1425. · Zbl 0985.35108
[29] A. E.Ingham, ‘Some trigonometrical inequalities with applications to the theory of series’, Math. Z.41 (1936) 367-369. · JFM 62.0225.01
[30] A.Ionescu and S.Klainerman, ‘On the uniqueness of smooth, stationary black holes in vacuum’, Invent. Math.175 (2009) 35-102. · Zbl 1182.83005
[31] A.Ionescu and S.Klainerman, ‘Uniqueness results for ill‐posed characteristic problems in curved space‐times’, Comm. Math. Phys.285 (2009) 873-900. · Zbl 1179.35338
[32] V.Isakov, Inverse problems for partial differential equations (Springer, Berlin, 2006). · Zbl 1092.35001
[33] A.Kachalov, M.Lassas and Y.Kurylev, Inverse boundary spectral problems (Chapman and Hall/CRC, Boca Raton, FL, 2001). · Zbl 1037.35098
[34] Y.Kian, ‘Stability in the determination of a time‐dependent coefficient for wave equations from partial data’, J. Math. Anal. Appl.436 (2016) 408-428. · Zbl 1331.35387
[35] Y.Kian, ‘Unique determination of a time‐dependent coefficient for wave equations from partial data’, Ann. Nonlinear Anal.34 (2017) 973-990. · Zbl 1435.35416
[36] Y.Kian and L.Oksanen, ‘Recovery of time‐dependent coefficient on Riemanian manifold for hyperbolic equations’, Int. Math. Res. Not.2017 (2017) 1-40.
[37] V.Komornik, Exact controllability and stabilization: the multiplier method (J. Wiley, Chichester, New York; Masson, Paris, 1994). · Zbl 0937.93003
[38] I.Lasiecka, R.Triggiani and X.Zhang, ‘Nonconservative wave equations with unobserved Neumann BC: global uniqueness and observability in one shot’, Contemp. Math.268 (2000) 227-326. · Zbl 1096.93503
[39] C.Laurent and M.Léautaud, ‘Uniform observability estimates for linear waves’, ESAIM Control Optim. Calc. Va.22 (2016) 1097-1136. · Zbl 1368.35163
[40] J.Le Rousseau, G.Lebeau, P.Terpolilli and E.Trélat, ‘Geometric control condition for the wave equation with a time‐dependent observation domain’, Anal. PDE10 (2017) 983-1015. · Zbl 1391.35254
[41] N.Lerner and L.Robbiano, ‘Unicité de Cauchy pour des opérateurs de type principal par’, J. Anal. Math.44 (1984) 32-66. · Zbl 0551.35016
[42] J.‐L.Lions, ‘Contrôlabilité exacte des systèmes distribués’, C. R. Acad. Sci. Paris Sér I Math.302 (1986) 471-475. · Zbl 0589.49022
[43] J.‐L.Lions, ‘Exact controllability, stabilizability, and perturbations for distributed systems’, SIAM Rev.30 (1988) 1-68. · Zbl 0644.49028
[44] J.‐L.Lions and E.Magenes, Non‐homogeneous boundary value problems and applications, Grundlehren der mathematischen Wissenschaften 181 (Springer, Berlin-Heidelberg, 1972). · Zbl 0223.35039
[45] L.Lu, S.Li, G.Chen and P.Yao, ‘Control and stabilization for the wave equation with variable coefficients in domains with moving boundary’, Systems Control Lett.80 (2015) 30-41. · Zbl 1330.93063
[46] S.Micu and E.Zuazua, ‘An introduction to the controllability of linear PDE’, Quelques questions de théorie du contrôle, Collection Travaux en Cours (ed. T.Sari (ed.); Hermann, Paris, 2005) 69-157.
[47] M. M.Miranda, ‘HUM and the wave equation with variable coefficients’, Asymptot. Anal.11 (1995) 317-341. · Zbl 0848.93031
[48] M. M.Miranda, ‘Exact controllability for the wave equation in domains with variable boundary’, Rev. Mat. Complut.9 (1996) 435-457. · Zbl 0889.93031
[49] A.Osses, ‘A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control’, SIAM J. Control Optim.40 (2001) 777-800. · Zbl 0997.93013
[50] J.Ralston, ‘Gaussian beams and the propagation of singularities’, Studies in partial differential equations, MAA Studies in Mathematics 23 (ed. W.Littman (ed.); Mathematical Association of America, 1982) 206-248. · Zbl 0533.35062
[51] L.Robbiani and C.Zuily, ‘Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients’, Invent. Math.131 (1998) 493-539. · Zbl 0909.35004
[52] D. L.Russell, ‘Boundary value control of the higher‐dimensional wave equation’, SIAM J. Control9 (1971) 29-42. · Zbl 0216.55501
[53] D. L.Russell, ‘Boundary value control theory of the higher‐dimensional wave equation. II.’, SIAM J. Control9 (1971) 401-419. · Zbl 0217.28102
[54] A.Sengouga, ‘Observability and controllability of the 1‐D wave equation in domains with moving boundary’, Acta Appl. Math.157 (2018) 117-128. · Zbl 1418.35256
[55] A.Sengouga, ‘Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints’, Preprint, 2018, arXiv:1803.08254.
[56] P.Stefanov and G.Uhlmann, ‘Thermoacoustic tomography with variable sound speed’, Inverse Problems25 (2009) 075011. · Zbl 1177.35256
[57] H.Sun, H.Li and L.Lu, ‘Exact controllability for a string equation in domains with moving boundary in one dimension’, Electron. J. Differential Equations2015 (2015) 1-7. · Zbl 1310.93034
[58] W. W.Symes, ‘The seismic reflection inverse problem’, Inverse Problems25 (2009) 123008. · Zbl 1181.35338
[59] D.Tataru, ‘Carleman estimates, unique continuation and applications’, http://math.berkeley.edu/ tataru/papers/ucpnotes.ps. · Zbl 0896.35023
[60] D.Tataru, ‘Unique continuation for solutions to PDEs; Between Hörmander’s theorems and Holmgren’s theorem’, Comm. Partial Differential Equations20 (1995) 855-884. · Zbl 0846.35021
[61] R.Triggiani and P. F.Yao, ‘Carleman estimates with no lower‐order terms for general Riemann wave equations. Global uniqueness and observability in one shot’, Appl. Math. Optim.46 (2002) 331-375. · Zbl 1030.35018
[62] R.Wald, General relativity (The University of Chicago Press, Chicago, IL, 1984). · Zbl 0549.53001
[63] H.Wang, Y.He and S.Li, ‘Exact controllability problem of a wave equation in non‐cylindrical domains’, Electron. J. Differential Equations2015 (2015) 1-13. · Zbl 1315.35118
[64] X.Zhang, ‘Explicit observability estimate for the wave equation with potential and its application’, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci.456 (2000) 1101-1115. · Zbl 0976.93038
[65] X.Zhang, ‘Explicit observability inequalities for the wave equation with lower order terms by means of carleman inequalities’, SIAM J. Control Optim.39 (2001) 812-834. · Zbl 0982.35059
[66] E.Zuazua, ‘Exact controllability for semilinear wave equations in one space dimension’, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 109-129. · Zbl 0769.93017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.