×

Dynamics of a periodic bluetongue model with a temperature-dependent incubation period. (English) Zbl 1437.34080

Summary: Bluetongue is a midge-borne disease that is transmitted by biting midges of the Culicoides family. In this paper, we propose a bluetongue model with seasonality and temperature-dependent incubation period. We introduce the basic disease reproduction ratio for the whole system \(R_0\) and the basic disease reproduction ratio in the absence of sheep \(\widetilde{R}_0\), and establish the threshold type results on the global dynamics in terms of \(R_0\) and \(\widetilde{R}_0\). More precisely, bluetongue persists in cattle and midges but it may eradicate the sheep if \(R_0>1\) and \(\widetilde{R}_0 >1\); the system admits a positive periodic solution, the disease is uniformly persistent in cattle, sheep, and midges, and bluetongue cannot eradicate the sheep if \(R_0>1\geq \widetilde{R}_0\). Numerically, we study the bluetongue transmission case in France, and perform some sensitivity analysis of \(R_0\). Our numerical simulations are carried out to illustrate the analytic results.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D30 Epidemiology
34K13 Periodic solutions to functional-differential equations
34K25 Asymptotic theory of functional-differential equations
Full Text: DOI

References:

[1] M. Baylis, L. O’Connell, and P. S. Mellor, Rates of bluetongue virus transmission between Culicoides sonorensis and sheep, Med. Vet. Entomol., 22 (2008), pp. 228-237.
[2] L. M. Beck-Johnson, W. A. Nelson, K. P. Paaijmans, A. F. Read, M. B. Thomas, and O. N. Bjørnstad, The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission, PLoS ONE, 8 (2013), e79276.
[3] A. Blackwell, A. J. Mordue (Luntz), M. R. Young, and W. Mordue, Bivoltinism, survival rates and reproductive characteristics of the Scottish biting midge, Culicoides impunctatus (Diptera: Ceratopogonidae) in Scotland, Bull. Entomol. Res., 82 (1992), pp. 299-306.
[4] H. Brunner, S. A. Gourley, R. Liu, and Y. Xiao, Pauses of larval development and their consequences for stage-structured populations, SIAM J. Appl. Math., 77 (2017), pp. 977-994. · Zbl 1367.92095
[5] S. Carpenter, H. L. Lunt, D. Arav, G. J. Venter, and P. S. Mellor, Oral susceptibility to bluetongue virus of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom, J. Med. Entomol., 43 (2006), pp. 73-78.
[6] M. V. P. Charron, H. Seegers, M. Langlais, and P. Ezanno, Seasonal spread and control of Bluetongue in cattle, J. Theoret. Biol., 291 (2011), pp. 1-9. · Zbl 1397.92623
[7] K. Cooke, P. van den Driessche, and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), pp. 332-352. · Zbl 0945.92016
[8] A. R. W. Elbers, A. Backx, K. Mintiens, G. Gerbier, C. Staubach, G. Hendrickx, and A. van der Spek, Field observations during the Bluetongue serotype \(8\) epidemic in \(2006\). II. Morbidity and mortality rate, case fatality and clinical recovery in sheep and cattle in the Netherlands, Prevent. Vet. Med., 87 (2008), pp. 31-40.
[9] A. C. Gerry and B. A. Mullens, Seasonal abundance and survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern California dairy, with reference to potential bluetongue virus transmission and persistence, J. Med. Entomol., 37 (2000), pp. 675-688.
[10] A. C. Gerry, B. A. Mullens, N. J. Maclachlan, and J. O. Mecham, Seasonal transmission of bluetongue virus by Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern California dairy and evaluation of vectorial capacity as a predictor of bluetongue virus transmission, J. Med. Entomol., 38 (2001), pp. 197-209.
[11] L. Goldsmit, E. Barzilai, and A. Tadmor, The comparative sensitivity of sheep and chicken embryos to bluetongue virus and observations on viraemia in experimentally infected sheep, Aust. Vet. J., 51 (1975), pp. 190-196.
[12] S. A. Gourley, G. Röst, and H. R. Thieme, Uniform persistence in a model for bluetongue dynamics, SIAM J. Math. Anal., 46 (2014), pp. 1160-1184. · Zbl 1300.34185
[13] S. A. Gourley, H. R. Thieme, and P. van den Driessche, Stability and persistence in a model for bluetongue dynamics, SIAM J. Appl. Math., 71 (2011), pp. 1280-1306. · Zbl 1231.34147
[14] S. Gubbins, S. Carpenter, M. Baylis, J. L. N. Wood, and P. S. Mellor, Assessing the risk of bluetongue to UK livestock: Uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number, J. R. Soc. Interface, 5 (2008), pp. 363-371.
[15] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. · Zbl 0787.34002
[16] J. L. Hourrigan and A. L. Klingsporn, Bluetongue: The disease in cattle, Aust. Vet. J., 51 (1975), pp. 170-174.
[17] J. K. Kelso and G. J. Milne, A spatial simulation model for the dispersal of the Bluetongue vector Culicoides brevitarsis in Australia, PLoS ONE, 9 (2014), e104646.
[18] F. Li and X.-Q. Zhao, A periodic SEIRS epidemic model with a time-dependent latent period, J. Math. Biol., 78 (2019), pp. 1553-1579. · Zbl 1414.34065
[19] X. Liang, L. Zhang, and X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dynam. Differential Equations, 31 (2019), pp. 1247-1278. · Zbl 1425.34086
[20] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), pp. 1-40. · Zbl 1106.76008
[21] Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), pp. 2023-2044. · Zbl 1221.34224
[22] Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), pp. 573-603. · Zbl 1384.37116
[23] C. Mayo, C. Shelley, N. J. Maclachlan, I. Gardner, D. Hartley, and C. Barker, A deterministic model to quantify risk and guide mitigation strategies to reduce bluetongue virus transmission in California dairy cattle, PLoS ONE, 11 (2016), e0165806.
[24] P. S. Mellor, J. Boorman, and M. Baylis, Culicoides biting midges: Their role as arbovirus vectors, Annu. Rev. Entomol., 45 (2000), pp. 307-340.
[25] B. A. Mullens, A. C. Gerry, T. J. Lysyk, and E. T. Schmidtmann, Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context, Vet. Ital., 40 (2004), pp. 160-166.
[26] H. O’Farrell and S. A. Gourley, Modelling the dynamics of bluetongue disease and the effect of seasonality, Bull. Math. Biol., 76 (2014), pp. 1981-2009. · Zbl 1306.34127
[27] R. Omori and B. Adams, Disrupting seasonality to control disease outbreaks: The case of koi herpes virus, J. Theoret. Biol., 271 (2011), pp. 159-165. · Zbl 1405.92268
[28] B. V. Purse, P. S. Mellor, D. J. Rogers, A. R. Samuel, P. P. C. Mertens, and M. Baylis, Climate change and the recent emergence of bluetongue in Europe, Nat. Rev. Microbiol., 3 (2005), pp. 171-181.
[29] D. H. Roberts, Bluetongue: A review, State Vet. J., 44 (1990), pp. 66-80.
[30] R. Rosà and A. Pugliese, Effects of tick population dynamics and host densities on the persistence of tick-borne infections, Math. Biosci., 208 (2007), pp. 216-240. · Zbl 1116.92057
[31] G. Savini, M. Goffredo, F. Monaco, A. Di Gennaro, M. A. Cafiero, L. Baldi, P. de Santis, R. Meiswinkel, and V. Caporale, Bluetongue virus isolations from midges belonging to the Obsoletus complex (Culicoides, Diptera: Ceratopogonidae) in Italy, Vet. Rec., 157 (2005), pp. 133-139.
[32] C. Schulz, E. Bréard, C. Sailleau, M. Jenckel, C. Viarouge, D. Vitour, M. Palmarini, M. Gallois, D. Höper, B. Hoffmann, M. Beer, and S. Zientara, Bluetongue virus serotype 27: detection and characterization of two novel variants in Corsica, France, J. Gen. Virol., 97 (2016), pp. 2073-2083.
[33] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. · Zbl 0821.34003
[34] J. Spreull, Malarial catarrhal fever (bluetongue) of sheep in South Africa, J. Comp. Pathol. Therapeut., 18 (1905), pp. 321-337.
[35] C. Szmaragd, A. J. Wilson, S. Carpenter, J. L. N. Wood, P. S. Mellor, and S. Gubbins, A modeling framework to describe the transmission of bluetongue virus within and between farms in Great Britain, PLoS ONE, 4 (2009), e7741.
[36] E. Veronesi, C. Hamblin, and P. S. Mellor, Live attenuated bluetongue vaccine viruses in Dorset Poll sheep, before and after passage in vector midges (Diptera: Ceratopogonidae), Vaccine, 23 (2005), pp. 5509-5516.
[37] W. Walter, On strongly monotone flows, Ann. Polon. Math., 66 (1997), pp. 269-274. · Zbl 0870.34014
[38] W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differential Equations, 20 (2008), pp. 699-717. · Zbl 1157.34041
[39] X. Wang and X.-Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 853-881. · Zbl 1365.35075
[40] X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), pp. 1155-1182. · Zbl 1372.92113
[41] A. J. Wilson and P. S. Mellor, Bluetongue in Europe: Past, present and future, Philos. Trans. Roy. Soc. London Ser. B, 364 (2009), pp. 2669-2681.
[42] E. J. Wittmann, P. S. Mellor, and M. Baylis, Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis, Med. Vet. Entomol., 16 (2002), pp. 147-156.
[43] D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), pp. 417-438. · Zbl 1077.37051
[44] X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differential Equations, 29 (2017), pp. 67-82. · Zbl 1365.34145
[45] X.-Q. Zhao, Dynamical Systems in Population Biology, 2nd ed., Springer, New York, 2017. · Zbl 1393.37003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.