×

Spectrality of a class of Moran measures. (English) Zbl 1437.28010

Summary: Let \(\{M_n\}_{n=1}^{\infty}\) be a sequence of expanding matrices with \(M_n=\operatorname{diag}(p_n,q_n)\), and let \(\{\mathcal{D}_n\}_{n=1}^{\infty}\) be a sequence of digit sets with \(\mathcal{D}_n=\{(0,0)^t,(a_n,0)^t,(0,b_n)^t,\pm (a_n,b_n)^t\} \), where \(p_n\), \(q_n\), \(a_n\) and \(b_n\) are positive integers for all \(n\geqslant 1\). If \(\sup_{n\geqslant 1}\{\frac{a_n}{p_n},\frac{b_n}{q_n}\}<\infty\), then the infinite convolution \(\mu_{\{M_n\},\{\mathcal{D}_n\}}=\delta_{M_1^{-1}\mathcal{D}_1}\ast\delta_{(M_1M_2)^{-1}\mathcal{D}_2}\ast \cdots\) is a Borel probability measure (Cantor-Dust-Moran measure). In this paper, we investigate whenever there exists a discrete set \(\Lambda\) such that \(\{e^{2\pi i\langle\lambda,x\rangle}:\lambda\in\Lambda\}\) is an orthonormal basis for \(L^2(\mu_{\{M_n\},\{\mathcal{D}_n\}})\).

MSC:

28A80 Fractals
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
Full Text: DOI

References:

[1] An, L. X. and He, X. G., A class of spectral Moran measures. J. Funct. Anal.266(2014), 343-354. · Zbl 1303.28009
[2] An, L. X., He, X. G., and Lau, K. S., Spectrality of a class of infinite convolutions. Adv. Math.283(2015), 362-376. · Zbl 1323.28007
[3] Dai, X. R., When does a Bernoulli convolution admit a spectrum?Adv. Math.231(2012), 1681-1693. · Zbl 1266.42012
[4] Dai, X. R., He, X. G., and Lai, C. K., Spectral property of Cantor measures with consecutive digits. Adv. Math.242(2013), 187-208. · Zbl 1277.28009
[5] Dai, X. R., He, X. G., and Lau, K. S., On spectral N-Bernoulli measures. Adv. Math.259(2014), 511-531. · Zbl 1303.28011
[6] Deng, Q. R. and Lau, K. S., Sierpinski-type spectral self-similar measures. J. Funct. Anal.269(2015), 1310-1326. · Zbl 1323.28011
[7] Deng, Q. R., On the spectra of Sierpinski-type self-affine measures. J. Funct. Anal.270(2016), 4426-4442. · Zbl 1337.42028
[8] Dutkay, D., Haussermann, J., and Lai, C. K., Hadamard triples generate self-affine spectral measures. Trans. Amer. Math. Soc.371(2019), 1439-1481. · Zbl 1440.42030
[9] Dutkay, D. and Jorgensen, P., Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z.256(2007), 801-823. · Zbl 1129.28006
[10] Dutkay, D. and Jorgensen, P., Fourier frequencies in affine iterated function systems. J. Funct. Anal.247(2007), 110-137. · Zbl 1128.42013
[11] Fu, X. Y., He, X. G., and Lau, K. S., Spectrality of self-similar tiles. Constr. Approx.45(2015), 519-541. · Zbl 1329.42032
[12] Fu, Y. S. and Wen, Z. X., Spectral property of a class of Moran measures on ℝ. J. Math. Anal. Appl.430(2015), 572-584. · Zbl 1316.28008
[13] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal.16(1974), 101-121. · Zbl 0279.47014
[14] He, L. and He, X. G., On the Fourier orthonormal bases of Cantor-Moran measures. J. Funct. Anal.272(2017), 1980-2004. · Zbl 1357.28010
[15] Hutchinson, J., Fractals and self-similarity. Indiana Univ. Math. J.30(1981), 713-747. · Zbl 0598.28011
[16] Hu, T. Y. and Lau, K. S., Spectral property of the Bernoulli convolutions. Adv. Math.219(2008), 554-567. · Zbl 1268.42044
[17] Jorgensen, P. and Pedersen, S., Dense analytic subspaces in fractal L^2-spaces. J. Anal. Math.75(1998), 185-228. · Zbl 0959.28008
[18] Kolountzakis, M. and Matolcsi, M., Complex Hadamard matrices and the spectral set conjecture. Collect. Math.57(2006), 281-291. · Zbl 1134.42313
[19] Kolountzakis, M. and Matolcsi, M., Tiles with no spectra. Forum Math.18(2006), 519-528. · Zbl 1130.42039
[20] Łaba, I. and Wang, Y., On spectral Cantor measures. J. Funct. Anal.193(2002), 409-420. · Zbl 1016.28009
[21] Li, J. L., Non-spectral problem for a class of planar self-affine measures. J. Funct. Anal.255(2008), 3125-3148. · Zbl 1211.28007
[22] Li, J. L., Spectra of a class of self-affine measures. J. Funct. Anal.260(2011), 1086-1095. · Zbl 1222.28015
[23] Li, J. L., Spectrality of self-affine measures and generalized compatible pairs. Monatsh. Math.184(2017), 611-625. · Zbl 1379.28010
[24] Liu, J. C., Dong, X. H., and Li, J. L., Non-spectral problem for the self-affine measures. J. Funct. Anal.273(2017), 705-720. · Zbl 1366.28009
[25] Liu, J. C. and Luo, J. J., Spectral property of self-affine measures on ℝ^n. J. Funct. Anal.272(2017), 599-612. · Zbl 1351.28017
[26] Strichartz, R., Remarks on: “Dense analytic subspaces in fractal spaces” by P. Jorgensen and S. Pedersen. J. Anal. Math.75(1998), 229-231. · Zbl 0959.28009
[27] Strichartz, R., Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math.81(2000), 209-238. · Zbl 0976.42020
[28] Tao, T., Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett.11(2004), 251-258. · Zbl 1092.42014
[29] Tang, M. W. and Yin, F. L., Spectrality of Moran measures with four-element digit sets. J. Math. Anal. Appl.461(2018), 354-363. · Zbl 1405.28013
[30] Wang, Z. Y., Dong, X. H., and Liu, Z. S., Spectrality of certain Moran measures with three-element digit sets. J. Math. Anal. Appl.459(2018), 743-752. · Zbl 1377.28006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.