×

A Jordan canonical form for nilpotent elements in an arbitrary ring. (English) Zbl 1437.16009

In this paper the authors prove the following result:
Let \(R\) be a ring of bounded index \(n\) for which there exists an element whose nonzero \(n-1\) power is von Neumann regular. We have:
if \(R\) is prime, then it is isomorphic to a matrix ring over a unital domain;
if \(R\) is indecomposable, then it is isomorphic to a matrix ring over a unital ring without nilpotent elements;
if \(R\) is von Neumann regular, then it is isomorphic to a matrix ring over an abelian regular ring, and, therefore,
if \(R\) is prime and von Neumann regular, it is isomorphic to a matrix ring over a division ring.

The key tool of this result is a Jordan decomposition of any nilpotent element of index \(n\) whose \(n-1\) power is von Neumann regular. This elements can be decomposed into an orthogonal sum of a Jordan block of size \(n\) over a corner of the original ring, and a nilpotent part of lower index. This result generalizes one of [K. I. Beidar et al. [Commun. Algebra 32, No. 9, 3543–3562 (2004; Zbl 1074.16005)], where the condition of being von Neumann regular was required for the whole ring.

MSC:

16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16U99 Conditions on elements
16S50 Endomorphism rings; matrix rings

Citations:

Zbl 1074.16005
Full Text: DOI

References:

[1] Armendariz, Efraim P., On semiprime rings of bounded index, Proc. Amer. Math. Soc., 85, 2, 146-148 (1982) · Zbl 0496.16004
[2] Beidar, K. I.; O’Meara, K. C.; Raphael, R. M., On uniform diagonalisation of matrices over regular rings and one-accessible regular algebras, Comm. Algebra, 32, 9, 3543-3562 (2004) · Zbl 1074.16005
[3] Bergman, George M., Strong inner inverses in endomorphism rings of vector spaces, Publ. Mat., 62, 1, 253-284 (2018) · Zbl 1381.16029
[4] Beĭdar, K. I.; Mikhalëv, A. V., Semiprime rings with bounded indexes of nilpotent elements, Tr. Semin. im. I. G. Petrovskogo, 13, 237-249 (1988), 259-260 · Zbl 0682.16004
[5] Fernández López, A.; García Rus, E.; Gómez Lozano, M.; Siles Molina, M., Jordan canonical form for finite rank elements in Jordan algebras, Linear Algebra Appl., 260, 151-167 (1997) · Zbl 0891.17022
[6] Fieldhouse, D. J., Pure theories, Math. Ann., 184, 1-18 (1969) · Zbl 0174.06902
[7] Goodearl, K. R., Von Neumann Regular Rings (1991), Robert E. Krieger Publishing Co., Inc.: Robert E. Krieger Publishing Co., Inc. Malabar, FL · Zbl 0749.16001
[8] Hannah, John, Quotient rings of semiprime rings with bounded index, Glasg. Math. J., 23, 1, 53-64 (1982) · Zbl 0472.16002
[9] Kaplansky, Irving, Topological representation of algebras. II, Trans. Amer. Math. Soc., 68, 62-75 (1950) · Zbl 0035.30301
[10] Khurana, Dinesh, Unit-regularity of regular nilpotent elements, Algebr. Represent. Theory, 19, 3, 641-644 (2016) · Zbl 1354.16010
[11] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189 (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0911.16001
[12] Lawson, Mark V., Inverse semigroups, (The Theory of Partial Symmetries (1998), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ) · Zbl 0907.20051
[13] Nielsen, Pace P.; Šter, Janez, Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings, Trans. Amer. Math. Soc., 370, 3, 1759-1782 (2018) · Zbl 1445.16008
[14] O’Meara, Kevin C.; Clark, John; Vinsonhaler, Charles I., Advanced topics in linear algebra, (Weaving Matrix Problems Through the Weyr Form (2011), Oxford University Press: Oxford University Press Oxford) · Zbl 1235.15013
[15] Petrich, Mario, Inverse Semigroups, Pure and Applied Mathematics (New York) (1984), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, A Wiley-Interscience Publication · Zbl 0546.20053
[16] Zelmanowitz, J., Regular modules, Trans. Amer. Math. Soc., 163, 341-355 (1972) · Zbl 0227.16022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.