×

Principal co-Higgs bundles on \(\mathbb{P}^1\). (English) Zbl 1437.14041

Recall that co-Higgs bundles arise principally in the study of generalized holomorphic bundles on generalized complex manifolds, in the sense of M. Gualtieri [Ann. Math. (2) 174, No. 1, 75–123 (2011; Zbl 1235.32020)] and N. Hitchin [Q. J. Math. 54, No. 3, 281–308 (2003; Zbl 1076.32019)]. Let \(G\) be complex connected reductive affine algebraic groups. The aim of this paper is to give a Lie-theoretic characterization of the semistability of principal \(G\)-co-Higgs bundles on the complex projective line \(\mathbb{P}^1\) in terms of the simple roots of a Borel subgroup of \(G\). The authors describe a stratification of the moduli space in terms of the Harder-Narasimhan type of the underlying bundle. This paper is organized as follows: the first section is an introduction to the subject. The second section deals with adjoint bundle of a co-Higgs bundle and the third section with torus reduction of principal \(G\)-bundles. The forth section concerns a criterion for stable co-Higgs field. Finally, the fifth section tackles the strata for moduli.

MSC:

14H60 Vector bundles on curves and their moduli
14D20 Algebraic moduli problems, moduli of vector bundles
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

References:

[1] Anchouche, B., Azad, H. and Biswas, I., Harder-Narasimhan reduction for principal bundles over a compact Kähler manifold, Math. Ann.323 (2002), 693-712. · Zbl 1010.32013
[2] Anchouche, B. and Biswas, I., Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math.123 (2001), 207-228. · Zbl 1007.53026
[3] Babbitt, D. G. and Varadarajan, V. S., Local moduli for meromorphic differential equations, Astérisque169-170 (1989). · Zbl 0683.34003
[4] Balaji, V. and Parameswaran, A. J., Tensor product theorem for Hitchin pairs – an algebraic approach, Ann. Inst. Four.61 (2011), 2361-2403. · Zbl 1248.14046
[5] Birkhoff, G. D., Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc.10 (1909), 436-470. · JFM 40.0352.02
[6] Borel, A., Linear algebraic groups, 2nd edn, , Volume 126 (Springer-Verlag, New York, 1991). · Zbl 0726.20030
[7] Bottacin, F., Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup.28 (1995), 391-433. · Zbl 0864.14004
[8] Bradlow, S. B., García-Prada, O. and Mundet I Riera, I., Relative Hitchin-Kobayashi correspondences for principal pairs, Quart. J. Math.54 (2003), 171-208. · Zbl 1064.53056
[9] Friedman, R. and Morgan, J. W., Holomorphic principal bundles over elliptic curves. II. The parabolic construction, Jour. Diff. Geom.56 (2000), 301-379. · Zbl 1033.14016
[10] Gualtieri, M., Generalized complex geometry, Ann. Math.174 (2011), 75-123. · Zbl 1235.32020
[11] Grothendieck, A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math.79 (1957), 121-138. · Zbl 0079.17001
[12] Hitchin, N. J., Stable bundles and integrable systems, Duke Math. J.54 (1987), 91-114. · Zbl 0627.14024
[13] Hitchin, N. J., Lie groups and Teichmüller space, Topology31 (1992), 449-473. · Zbl 0769.32008
[14] Hitchin, N. J., Generalized Calabi-Yau manifolds, Quart. J. Math.54 (2003), 281-308. · Zbl 1076.32019
[15] Hitchin, N. J., Generalized holomorphic bundles and the B-field action, J. Geom. Phys.61 (2011), 352-362. · Zbl 1210.53079
[16] Humphreys, J. E., Linear algebraic groups, , Volume 21 (Springer-Verlag, New York, 1975). · Zbl 0325.20039
[17] Maruyama, M., Openness of a family of torsion free sheaves, J. Math. Kyoto Univ.16 (1976), 627-637. · Zbl 0404.14004
[18] García-Prada, O., Gothen, P. B. and Mundet I Riera, I., The Hitchin-Kobayashi correspondence, Higgs pairs, and surface group representations, preprint (arXiv.org/abs/0909.4487, 2012). · Zbl 1303.14043
[19] Markman, E., Spectral curves and integrable systems, Compos. Math.93 (1994), 255-290. · Zbl 0824.14013
[20] Nitsure, N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc.62 (1991), 275-300. · Zbl 0733.14005
[21] Rayan, S., Geometry of co-Higgs bundles, D.Phil. Thesis (Oxford, 2011).
[22] Rayan, S., Co-Higgs bundles on ℙ^1, New York J. Math.19 (2013), 925-945. · Zbl 1287.14003
[23] Rayan, S., Constructing co-Higgs bundles on ℙ^2, Quart. J. Math.65 (2014), 1437-1460. · Zbl 1317.14027
[24] Schmitt, A. H. W., Geometric invariant theory and decorated principal bundles, Zurich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zurich, 2008). · Zbl 1159.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.