×

Discrepancy bounds for the distribution of the Riemann zeta-function and applications. (English) Zbl 1437.11130

For any complex-valued function \(f:{\mathbb{R}}\to {\mathbb{C}}\) and any rectangle \(R\subset {\mathbb{C}}\), let \(P_T\) denote the proportion function: \[ P_T(f(t)\in R) = \frac{1}{T}\operatorname{meas}\{t\in [T,2T]\mid f(t)\in R\}. \] Let \(X=\{X(p)\mid p \text{ prime}\}\) denote a sequence of independent random variables, uniformly distributed on the complex unit circle, parameterized by the set of prime numbers. Denote the asociated random Euler product by \[ \zeta(s,X)=\prod_p (1-X(p)p^{-s})^{-1},\quad s=\sigma+it,\ \sigma>1/2. \] It’s know that this product converges almost surely. Let \(P(\log \zeta(s,X)\in R)\) denote the probability that the random variable \(\log \zeta(s,X)\) belongs to \(R\). Define the descrepancy to be \[ D_\sigma(T)=\sup_R |P_T(\log \zeta(\sigma+it)\in R)-P(\log \zeta(s,X)\in R)|, \] where the sup is taken over all rectangles whose sides are parallel to the coordinate axes.
The main results of the article under review are as follows.
For \(1/2<\sigma <1\), we have \(D_\sigma(T)<<(\log T)^{-\sigma},\) where the implied constant depends on \(\sigma\). A similar estimate holds for \(\sigma=1\).
For \(1/2<\sigma <1\) and for each sufficiently small \(\epsilon>0\), we have \(D_\sigma(T)=\Omega (T^{1-2\sigma-\epsilon}),\) where the implied constant depends on \(\sigma,\epsilon\).
For \(a\in {\mathbb{C}}^\times\) and \(1/2<\sigma_1<\sigma_2<1\), let \(N_a(\sigma_1,\sigma_2,T)=\#\{(\sigma,t)\mid \sigma_1<\sigma<\sigma_2, T<t<2T, \zeta(\sigma+it)=a\}\) denote the number of \(a\)-points in the stated rectangle. There is a constant \(c(a,\sigma_1,\sigma_2) >0\) such that \[ N_a(\sigma_1,\sigma_2,T)=c(a,\sigma_1,\sigma_2)T+ O(T\frac{\log\log T}{(\log T)^{\sigma_1/2}}). \]
For \(1/2<\sigma <1\) there is a constant \(b(\sigma)>0\), such that for all \(3<\tau<b(\sigma)(\log T)^{1-\sigma}(\log \log T)^{1-\frac{1}{\sigma}}\), \[ P_T(Re\{\log \zeta(\sigma+it)\}>\tau) =P(Re\{\log \zeta(s,X)\}>\tau)+\text{ error}, \] where the lower order error term is explicitly estimated. A similar estimate is obtained by replacing the real part \(Re\) by the imaginary part \(Im\).

More carefully stated versions of these results are given in the paper under review.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
26A42 Integrals of Riemann, Stieltjes and Lebesgue type

References:

[1] Bohr, H.; Jessen, B., Über die werteverteilung der Riemannschen zetafunktion, erste Mitteilung, Acta Math., 54, 1-35 (1930) · JFM 56.0287.01 · doi:10.1007/BF02547516
[2] Bohr, H.; Jessen, B., Über die werteverteilung der Riemannschen zetafunktion, Acta Math., 58, 1-55 (1932) · Zbl 0003.38901 · doi:10.1007/BF02547773
[3] Borchsenius, V.; Jessen, B., Mean motions and values of the Riemann zeta function, Acta Math., 80, 97-166 (1948) · Zbl 0038.23201 · doi:10.1007/BF02393647
[4] Gonek, S.; Lee, Y., Zero-density estimates for Epstein zeta functions, Q. J. Math., 68, 301-344 (2017) · Zbl 1423.11075 · doi:10.1093/qmath/haw041
[5] Granville, A.; Soundararajan, K., Extreme values of | (1 + it)|, The Riemann Zeta Function and Related Themes: Papers in Honour of Professor K. Ramachandra, 65-80 (2006), Mysore: Ramanujan Mathematical Society, Mysore · Zbl 1131.11055
[6] Guo, C. R., On the zeros of the derivative of the Riemann zeta function, Proc. London Math. Soc., 72, 28-62 (1996) · Zbl 0833.11043 · doi:10.1112/plms/s3-72.1.28
[7] Harman, G.; Matsumoto, K., Discrepancy estimates for the value-distribution of the Riemann zeta-function. IV, J. London Math. Soc. (2), 50, 17-24 (1994) · Zbl 0874.11058 · doi:10.1112/jlms/50.1.17
[8] Hattori, T.; Matsumoto, K., Large deviations of Montgomery type and its application to the theory of zeta-functions, Acta Arith., 71, 79-94 (1995) · Zbl 0818.11032 · doi:10.4064/aa-71-1-79-94
[9] Hattori, T.; Matsumoto, K., A limit theorem for Bohr-Jessen’s probability measures of the Riemann zeta-function, J. Reine Angew. Math, 507, 219-232 (1999) · Zbl 0912.11032 · doi:10.1515/crll.1999.507.219
[10] Ingham, A. E., Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2), 27, 273-300 (1927) · JFM 53.0313.01
[11] Iwaniec, H.; Kowalski, E., Analytic Number Theory (2004), RI: American Mathematical Society, Providence, RI · Zbl 1059.11001
[12] Jessen, B.; Wintner, A., Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc, 38, 48-88 (1935) · JFM 61.0462.03 · doi:10.1090/S0002-9947-1935-1501802-5
[13] Joyner, D., Distribution Theorems of L-functions (1986), Harlow: Longman Scientific & Technical, Harlow · Zbl 0609.10032
[14] Lamzouri, Y., The two-dimensional distribution of values of ζ (1 + it), Int. Math. Res. Not. IMRN (2008) · Zbl 1232.11084
[15] Lamzouri, Y., Extreme values of arg L(1, χ), Acta Arith, 146, 335-354 (2011) · Zbl 1231.11102 · doi:10.4064/aa146-4-3
[16] Lamzouri, Y., On the distribution of extreme values of zeta and L-functions in the strip 12 < s < χ 1, Int. Math. Res. Not. IMRN, 5449-5503 (2011) · Zbl 1264.11075
[17] Landau, E., Über die Wurzeln der Zetafunktion, Math. Z, 20, 98-104 (1924) · JFM 50.0231.01 · doi:10.1007/BF01188073
[18] Lee, Y., On the zeros of Epstein zeta functions, Forum. Math, 26, 1807-1836 (2014) · Zbl 1356.11022 · doi:10.1515/forum-2012-0057
[19] Matsumoto, K., Discrepancy estimates for the value-distribution of the Riemann zeta-function. II, Number Theory and Combinatorics, 265-278 (1985), Singapore: World Scientific, Singapore · Zbl 0608.10040
[20] Matsumoto, K., Discrepancy estimates for the value-distribution of the Riemann zeta-function. III, Acta Arith, 50, 315-337 (1988) · Zbl 0657.10042 · doi:10.4064/aa-50-4-315-337
[21] Matsumoto, K., On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products, Acta Arith, 60, 125-147 (1991) · Zbl 0715.11043 · doi:10.4064/aa-60-2-125-147
[22] Montgomery, H. L., Extreme values of the riemann zeta function, Comment. Math. Helv, 52, 511-518 (1977) · Zbl 0373.10024 · doi:10.1007/BF02567383
[23] Selberg, A., Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory, 367-385 (1992), Salerno: University of Salerno, Salerno · Zbl 0787.11037
[24] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function (1986), New York: The Clarendon Press Oxford University Press, New York · Zbl 0601.10026
[25] Tsang, K-M, The Distribution of the Values of the Riemann Zeta-Function (1984), ProQuest LLC, Ann Arbor, MI: Princeton University, ProQuest LLC, Ann Arbor, MI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.