×

Trialities of minimally supersymmetric 2d gauge theories. (English) Zbl 1436.83085

Summary: We study dynamics of two-dimensional \(\mathcal{N} = (0, 1)\) supersymmetric gauge theories. In particular, we propose that there is an infrared triality between certain triples of theories with orthogonal and symplectic gauge groups. The proposal is supported by matching of anomalies and elliptic genera. This triality can be viewed as a \((0, 1)\) counterpart of the \((0, 2)\) triality proposed earlier by two of the authors and A. Gadde. We also describe the relation between global anomalies in gauge theoretic and sigma-model descriptions, filling in a gap in the present literature.

MSC:

83E30 String and superstring theories in gravitational theory
81T50 Anomalies in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE]. · Zbl 0910.14020
[2] D. Gaiotto, T. Johnson-Freyd and E. Witten, A Note On Some Minimally Supersymmetric Models In Two Dimensions, arXiv:1902.10249 [INSPIRE].
[3] D. Gaiotto and T. Johnson-Freyd, Mock modularity and a secondary elliptic genus, arXiv:1904.05788 [INSPIRE]. · Zbl 1416.81168
[4] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
[5] A. Gadde, S. Gukov and P. Putrov, Exact Solutions of 2d Supersymmetric Gauge Theories, JHEP11 (2019) 174 [arXiv:1404.5314] [INSPIRE]. · Zbl 1429.81088
[6] A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP03 (2014) 080 [arXiv:1305.0266] [INSPIRE]. · Zbl 1333.81399
[7] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \(\mathcal{N} = 2\) Gauge Theories, Commun. Math. Phys.333 (2015) 1241 [arXiv:1308.4896] [INSPIRE]. · Zbl 1321.81059
[8] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett.110 (2013) 061601 [arXiv:1211.4030] [INSPIRE]. · Zbl 1390.83325
[9] E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys.109 (1987) 525 [INSPIRE]. · Zbl 0625.57008
[10] C.L. Douglas, J. Francis, A.G. Henriques and M.A. Hill, Mathematical Surveys and Monographs. Vol. 201: Topological modular forms, AMS Press, New York U.S.A. (2014). · Zbl 1304.55002
[11] S. Stolz and P. Teichner, What is an elliptic object?, London Math. Soc. Lecture Note Ser.308 (2004) 247. · Zbl 1107.55004
[12] S. Stolz and P. Teichner, Supersymmetric field theories and generalized cohomology, Mathematical foundations of quantum field theory and perturbative string theory83 (2011) 377. · Zbl 1257.55003
[13] G. Segal, What is an elliptic object?, in London Mathematical Society Lecture Note Series. Vol. 342: Elliptic Cohomology: Geometry, Applications, and Higher Chromatic Analogues, Cambridge University Press, Cambridge U.K. (2007) pg. 306. · Zbl 1236.55011
[14] D. Gaiotto and T. Johnson-Freyd, Holomorphic SCFTs with small index, arXiv:1811.00589 [INSPIRE].
[15] S. Gukov, D. Pei, P. Putrov and C. Vafa, 4-manifolds and topological modular forms, arXiv:1811.07884 [INSPIRE]. · Zbl 1448.57020
[16] S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev.D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].
[17] S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett.118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].
[18] K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett.B 387 (1996) 513 [hep-th/9607207] [INSPIRE]. · Zbl 0991.81588
[19] O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys.B 499 (1997) 67 [hep-th/9703110] [INSPIRE]. · Zbl 0934.81063
[20] A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].
[21] N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE]. · Zbl 1377.81262
[22] J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP05 (2017) 159 [arXiv:1606.01912] [INSPIRE]. · Zbl 1380.81373
[23] M. Sakamoto, N = 1/2 Supersymmetry in Two-dimensions, Phys. Lett.B 151 (1985) 115 [INSPIRE].
[24] C.M. Hull and E. Witten, Supersymmetric σ-models and the Heterotic String, Phys. Lett.B 160 (1985) 398 [INSPIRE].
[25] R. Brooks, F. Muhammad and S.J. Gates, Unidexterous D = 2 Supersymmetry in Superspace, Nucl. Phys.B 268 (1986) 599 [INSPIRE].
[26] A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic Symmetry Protected Topological Phases and Cobordisms, JHEP12 (2015) 052 [arXiv:1406.7329] [INSPIRE]. · Zbl 1388.81845
[27] Q.-R. Wang and Z.-C. Gu, Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory, Phys. Rev.X 8 (2018) 011055 [arXiv:1703.10937] [INSPIRE].
[28] Q.-R. Wang and Z.-C. Gu, Construction and classification of symmetry protected topological phases in interacting fermion systems, arXiv:1811.00536 [INSPIRE].
[29] D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod. Phys.A 31 (2016) 1645044 [arXiv:1505.05856] [INSPIRE]. · Zbl 1351.81084
[30] G. Brumfiel and J. Morgan, The pontrjagin dual of 3-dimensional spin bordism, arXiv:1612.02860.
[31] C.M. Hull and P.K. Townsend, World Sheet Supersymmetry and Anomaly Cancellation in the Heterotic String, Phys. Lett.B 178 (1986) 187 [INSPIRE].
[32] P.S. Howe and G. Papadopoulos, Anomalies in Two-dimensional Supersymmetric Nonlinear σ Models, Class. Quant. Grav.4 (1987) 1749 [INSPIRE]. · Zbl 0649.53048
[33] K. Waldorf, String Connections and Chern-Simons Theory, arXiv:0906.0117 [INSPIRE]. · Zbl 1277.53024
[34] Z.-C. Gu and M. Levin, The effect of interactions on 2D fermionic symmetry-protected topological phases with Z 2 symmetry, Phys. Rev.B 89 (2014) 201113 [arXiv:1304.4569] [INSPIRE].
[35] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev.B 83 (2011) 075103 [arXiv:1008.4138].
[36] M. Atiyah and R. Bott, The moment map and equivariant cohomology, in Michael Atiyah Collected Works. Vol. 5: Gauge Theories, Clarendon, Oxford U.K. (1988), pg. 429. · Zbl 0521.58025
[37] N. Berline et al., Zéros d’un champ de vecteurs et classes caract́eristiques ´equivariantes, Duke Math. J.50 (1983) 539. · Zbl 0515.58007
[38] L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, Topology34 (1995) 291. · Zbl 0833.55009
[39] V. Guillemin and J. Kalkman, The Jeffrey-Kirwan localization theorem and residue operations in equivariant cohomology, J. Reine und Angew. Math.470 (1996) 123. · Zbl 0837.57028
[40] C. He, Localization of equivariant cohomology rings of real Grassmannians, arXiv:1609.06243.
[41] M. Dedushenko and S. Gukov, IR duality in 2D N = (0, 2) gauge theory with noncompact dynamics, Phys. Rev.D 99 (2019) 066005 [arXiv:1712.07659] [INSPIRE].
[42] C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE]. · Zbl 0964.81522
[43] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, The long flow to freedom, JHEP02 (2017) 056 [arXiv:1611.02763] [INSPIRE]. · Zbl 1377.81193
[44] A. Gadde, S. Gukov and P. Putrov, Walls, Lines and Spectral Dualities in 3d Gauge Theories, JHEP05 (2014) 047 [arXiv:1302.0015] [INSPIRE].
[45] A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, Prog. Math.319 (2016) 155 [arXiv:1306.4320] [INSPIRE]. · Zbl 1373.81295
[46] E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE]. · Zbl 0996.81061
[47] E.H. Brown Jr., The Cohomology of BSO_nand BO_nwith Integer Coefficients, Proc. Am. Math. Soc.85 (1982) 283. · Zbl 0509.55010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.