×

Kerov functions revisited. (English) Zbl 1436.81104

Summary: The Schur functions play a crucial role in the modern description of HOMFLY polynomials for knots and of topological vertices in DIM-based network theories, which could merge into a unified theory still to be developed. The Macdonald functions do the same for hyperpolynomials and refined vertices, but merging appears to be more problematic. For a detailed study of this problem, more knowledge is needed about the Macdonald polynomials than is usually available. As a preparation for the discussion of the knot/vertices relation, we summarize the relevant facts and open problems about the Macdonald and, more generally, Kerov functions. Like Macdonald polynomials, they are triangular combinations of Schur functions, but orthogonal in a more general scalar product. We explain that parameters of the measure can be considered as a set of new time variables, and the Kerov functions are actually expressed through the Schur functions of these variables as well. Despite they provide an infinite-parametric extension of the Schur and Macdonald polynomials, the Kerov functions, and even the skew Kerov functions continue to satisfy the most important relations, like Cauchy summation formula, the transposition identity for reflection of the Young diagram and expression of the skew functions through the generalized Littlewood-Richardson structure constants. Since these are the properties important in most applications, one can expect that the Kerov extension exists for most of them, from the superintegrable matrix and tensor models to knot theory.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T32 Matrix models and tensor models for quantum field theory
81T45 Topological field theories in quantum mechanics
57K10 Knot theory
57K14 Knot polynomials
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
05E05 Symmetric functions and generalizations
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] On Macdonald and Kerov functions for composite representations (in preparation). https://doi.org/10.1016/j.nuclphysb.2019.114641. · Zbl 1431.81070
[2] Aganagic, M.; Mariño, M.; Vafa, C., Comm. Math. Phys., 247, 467-512 (2004), hep-th/0206164; Aganagic, M.; Klemm, A.; Marino, M.; Vafa, C., Comm. Math. Phys., 254, 425 (2005), arXiv:hep-th/0305132[hep-th/0305132]
[3] M. Aganagic, Sh. Shakirov, arXiv:1105.5117.
[4] Alexander, J. W., Trans. Amer. Math. Soc., 30, 2, 275-306 (1928); Jones, V. F.R., Invent. Math.. Invent. Math., Bull. AMS. Invent. Math.. Invent. Math., Bull. AMS, Ann. Math., 126, 335 (1987); Kauffman, L., Topology, 26, 395 (1987); Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K.; Ocneanu, A., Bull. AMS., 12, 239 (1985); Przytycki, J. H.; Traczyk, K. P., Kobe J. Math., 4, 115-139 (1987)
[5] Aravind, P. K., (Cohen, R. S.; etal., Potentiality, Entanglement and Passion-at-a-Distance (1997), Kluwer), 53-59; Kauffman, L.; Lomonaco, S., New Journal of Physics, 4, 73.1-18 (2002); 6 (2004) 134.1-40, quant-ph/0401090.
[6] Y. Ohkubo, arXiv:1404.5401.; B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, arXiv:1502.07194.; H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, S. Yanagida, arXiv:1106.4088.; Mironov, S.; Morozov, An.; Zenkevich, Y., JETP Lett., 99, 109 (2014), arXiv:1312.5732
[7] Awata, H.; Kanno, H.; Mironov, A.; Morozov, A.; Morozov, An., Phys. Rev., D98, 046018 (2018)
[8] Awata, H.; Yamada, Y., J. High Energy Phys.. J. High Energy Phys., Prog. Theor. Phys., 124, 227 (2010), arXiv:1004.5122; Mironov, A.; Morozov, A.; Shakirov, S.; Smirnov, A., Nucl. Phys., B855, 128 (2012), arXiv:1105.0948; H. Itoyama, T. Oota, R. Yoshioka, arXiv:1602.01209.
[9] H. Awata, et al. (in press). https://doi.org/10.1007/JHEP04(2019)097.
[10] Baker, T. H., Symmetric functions and infinite-dimensional algebras (1994), (Ph.D. thesis); Bougourzi, Tasmania A. H.; Vinet, L., Lett. Math. Phys., 39, 299-311 (1997), q-alg/9604021; A.A. Bytsenko, M. Chaichian, R.J. Szabo, A. Tureanu, arXiv:1308.2177.
[11] V. Balasubramanian, M. DeCross, J. Fliss, A. Kar, R.G. Leigh, O. Parrikar, arXiv:1801.01131.; D. Melnikov, A. Mironov, S. Mironov, A. Morozov, An. Morozov, arXiv:1809.04574.
[12] Biane, P., (Vershik, A., Asymptotic Combinatorics with Applications To Mathematical Physics. Asymptotic Combinatorics with Applications To Mathematical Physics, Springer Lecture Notes in Mathematics, vol. 1815 (2003)), 185-200 · Zbl 1035.05098
[13] I. Cherednik, arXiv:1111.6195.
[14] Colmenarejo, L.; Dunkl, C. F.; Luque, J.-G., Symmetry, 10, 541 (2018)
[15] Ding, J.; Iohara, K., Lett. Math. Phys., 41, 181-193 (1997), q-alg/9608002; Miki, K., J. Math. Phys., 48, 123520 (2007)
[16] Dunfield, N. M.; Gukov, S.; Rasmussen, J., Experimental Math., 15, 129-159 (2006), math/0505662; Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An., JHEP, 2012, 131 (2012), arXiv:1203.5978; E. Gorsky, S. Gukov, M. Stosic, arXiv:1304.3481.; Gukov, S.; Nawata, S.; Saberi, I.; Stosic, M.; Sulkowski, P., JHEP, 1603, 004 (2016), arXiv:1512.07883
[17] Dunin-Barkowski, P.; Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A., J. High Energy Phys., 03, 021 (2013), arXiv:1106.4305
[18] Freund, P. G.O.; Zabrodin, A. V., Phys. Lett., B294, 347-353 (1992), hep-th/9208063
[19] Howe, R., Trans. Amer. Math. Soc.. Trans. Amer. Math. Soc., J. Amer. Math. Soc., 2, 535-552-570 (1989); Goodman, R.; Wallach, N. R., Representations and Invariants of the Classical Groups (1998), Cambridge University Press
[20] Kerov, S. V., Funct. Anal. Appl., 25, 78-81 (1991), In variance with the Kerov polynomials, the literature on these Kerov functions is quite limited, e.g. see [10] · Zbl 0760.05090
[21] Knizhnik, V.; Zamolodchikov, A., Nuclear Phys. B, 247, 83 (1984) · Zbl 0661.17020
[22] Y. Zenkevich, arXiv:1612.09570.
[23] L. Lapointe, A. Lascoux, J. Morse, arXiv:math/9808050.
[24] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Oxford University Press · Zbl 0899.05068
[25] Mironov, A.; Morozov, A., Phys. Lett. B, 771, 503-507 (2017) · Zbl 1372.81111
[26] H. Itoyama, A. Mironov, A. Morozov, arXiv:1808.07783.
[27] Mironov, A.; Morozov, A., J. High Energy Phys., 2018, 163 (2018) · Zbl 1396.81203
[28] Mironov, A.; Morozov, A.; Morozov, An., J. High Energy Phys., 1203, 034 (2012) · Zbl 1309.81114
[29] Mironov, A.; Morozov, A.; Morozov, An., AIP Conf. Proc., 1562, 123 (2013), arXiv:1306.3197
[30] Mironov, A.; Morozov, A.; Morozov, An., (Rebhan, A.; Katzarkov, L.; Knapp, J.; Rashkov, R.; Scheidegger, E., Strings, Gauge Fields, and the Geometry behind: The Legacy of Maximilian Kreuzer (2013), World Scietific), 101-118 · Zbl 1255.81011
[31] Mironov, A.; Morozov, A.; Natanzon, S., Theoret. Math. Phys.. Theoret. Math. Phys., J. Geom. Phys., 62, 148-155-22 (2012), arXiv:1012.0433 · Zbl 1242.22008
[32] Rosso, M.; Jones, V. F.R., J. Knot Theory Ramifications, 2, 97-112 (1993); Tierz, M., Mod. Phys. Lett., A19, 1365-1378 (2004), hep-th/0212128; Brini, A.; Eynard, B.; Mariño, M., Ann. Henri Poincaré, 13, 8 (2012), arXiv:1105.2012
[33] Varagnolo, M.; Vasserot, E., Comm. Math. Phys., 182, 469-483 (1996), q-alg/9506026; Schiffmann, O.; Vasserot, E., Compositio Mathematica, 147, 188-234 (2011)
[34] Wess, J.; Zumino, B., Phys. Lett. B, 37, 95 (1971); Novikov, S., Usp. Mat. Nauk., 37, 3 (1982); Witten, E., Comm. Math. Phys., 92, 455 (1984); Polyakov, A.; Wiegmann, P., Phys. Lett.. Phys. Lett., Phys. Lett., B141, 223 (1984)
[35] Y. Zenkevich, arXiv:1712.10300.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.