×

SLEIPNNIR: a multiscale, particle level set method for Newtonian and non-Newtonian interface flows. (English) Zbl 1436.76033

Summary: We present in this paper a multiscale, micro-macro, particle level set method for Newtonian and non-Newtonian interface flows. The technique, termed SLEIPNNIR (“Semi-Lagrangian Ensemble Implementation of Particle level set for Newtonian and non-Newtonian Interfacial Rheology”), uses the finite element method in a semi-Lagrangian framework for the discretization of the governing equations, capturing the free surface by means of a particle level set strategy where all involved magnitudes are computed sharply. Surface tension effects are considered via the Laplace-Beltrami operator using a fully-explicit or semi-implicit technique, with a second-order accurate reinitialization procedure to ensure the signed distance property. Non-Newtonian fluids are tackled by means of a stochastic, variance-reduced, kinetic modeling approach in which the polymer stress tensor is retrieved making use of Compactly-Supported Radial Basis Functions for randomly scattered data interpolation. We carry out numerical tests to highlight the versatility, robustness and accuracy of the proposed scheme through a series of bubble dynamics experiments in a 2D setup, for large density and viscosity ratios, and featuring strong, purely elastic effects relevant to Engineering applications.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74A50 Structured surfaces and interfaces, coexistent phases
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Unverdi, S. O.; Tryggvason, G., A front tracking method for viscous, incompressible, multifluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[2] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests, Comput. Methods Appl. Mech. Engrg., 94, 339-351 (1992) · Zbl 0745.76044
[3] Best, J. P., The formation of toroidal bubbles upon the collapse of transient cavities, J. Fluid Mech., 251, 79-107 (1993) · Zbl 0784.76011
[4] Dang, T. S.; Meschke, G., An ALE-PFEM method for the numerical simulation of two-phase mixture flow, Comput. Methods Appl. Mech. Engrg., 278, 599-620 (2014) · Zbl 1423.76223
[5] Bo, W.; Shashkov, M., Adaptive reconnection-based arbitrary Lagrangian Eulerian method, J. Comput. Phys., 299, 902-939 (2015) · Zbl 1352.65602
[6] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[7] Renardy, Y.; Renardy, M., Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[8] Wang, Z.; Yang, J.; Stern, F., A new volume-of-fluid method with a constructed distance function on general structured grids, J. Comput. Phys., 231, 3703-3722 (2012) · Zbl 1402.65091
[9] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[10] Tornberg, A. K.; Engquist, B., A finite element based level-set method for multiphase flow applications, Comput. Vis. Sci., 3, 93-101 (2000) · Zbl 1060.76578
[11] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2002), Springer
[12] Losasso, F.; Fedkiw, R.; Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fuids, 35, 995-1010 (2006) · Zbl 1177.76295
[13] Marchandise, E.; Geuzaine, P.; Chevaugeon, N.; Remacle, J. F., A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, J. Comput. Phys., 225, 949-974 (2007) · Zbl 1118.76040
[14] Allaire, G.; Dapogny, C.; Frey, P., Shape optimization with a level set based mesh evolution method, Comput. Methods Appl. Mech. Engrg., 282, 22-53 (2014) · Zbl 1423.74739
[15] Quan, D. L.; Toulorge, T.; Marchandise, E.; Remacle, J. F.; Bricteux, G., Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries, Comput. Methods. Appl. Mech. Engrg., 268, 65-81 (2014) · Zbl 1295.74100
[16] Strain, J., A fast modular semi-Lagrangian method for moving interfaces, J. Comput. Phys., 161, 2, 512-536 (2000) · Zbl 0959.65110
[17] Cheng, L. T.; Tsai, Y. H., Redistancing by flow of time dependent eikonal equation, J. Comput. Phys., 227, 4002-4017 (2008) · Zbl 1317.76060
[18] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[19] Bermejo, R.; Prieto, J. L., A semi-Lagrangian particle level set finite element method for interface problems, SIAM J. Sci. Comput., 35, 4, A1815-A1846 (2013) · Zbl 1362.65102
[20] Kamran, K.; Rossi, R.; Oñate, E., A locally extended finite element method for the simulation of multi-fluid flows using the Particle Level Set method, Comput. Methods Appl. Mech. Engrg., 294, 1-18 (2015) · Zbl 1423.76244
[21] Alfaro, I.; Bel, D.; Cueto, E.; Doblaré, M.; Chinesta, F., Three-dimensional simulation of aluminium extrusion by the \(\alpha \)-shape based natural element method, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4269-4286 (2006) · Zbl 1128.74049
[22] Zhang, M., Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method, J. Comput. Phys., 229, 7238-7259 (2010) · Zbl 1426.76623
[23] Adami, S.; Hu, X.; A. Adams, N., A transport-velocity formulation for smoothed particle hydrodynamics, J. Comput. Phys., 241, 292-307 (2013) · Zbl 1349.76659
[24] Zhang, A.; Sun, P.; Ming, F., An SPH modeling of bubble rising and coalescing in three dimensions, Comput. Methods Appl. Mech. Engrg., 294, 189-209 (2015) · Zbl 1423.76378
[25] Pillapakkam, S. B.; Singh, P., A level-set method for computing solutions to viscoelastic two-phase flow, J. Comput. Phys., 174, 552-578 (2001) · Zbl 1056.76049
[26] Pillapakkam, S. B.; Singh, P.; Blackmore, D.; Aubry, N., Transient and steady state of a rising bubble in a viscoelastic fluid, J. Fluid Mech., 589, 215-252 (2007) · Zbl 1141.76337
[27] Martínez, M.; Cueto, F.; Doblaré, M.; Chinesta, F., Natural element meshless simulation of flows involving short fiber suspensions, J. Non-Newton. Fluid Mech., 115, 1, 51-78 (2003) · Zbl 1137.76449
[28] Foteinopoulou, K.; Laso, M., Numerical simulation of bubble dynamics in a Phan-Thien-Tanner liquid: Non-linear shape and size oscillatory response under periodic pressure, Ultrasonics, 50, 758-776 (2010)
[29] Pan, W.; Tartakovsky, A. M.; Monaghan, J. J., Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics, J. Comput. Phys., 242, 828-842 (2013) · Zbl 1426.76611
[30] Xu, X.; Ouyang, J.; Yang, B.; Liu, Z., SPH simulations of three-dimensional non-Newtonian free surface flows, Comput. Methods. Appl. Mech. Engrg., 256, 101-116 (2013) · Zbl 1352.76101
[31] Izbassarov, D.; Muradoglu, M., A front-tracking method for computational modeling of viscoelastic two-phase flow systems, J. Non-Newton. Fluid Mech., 223, 122-140 (2015)
[32] Ebrahimi, B.; Taghavi, S.-M.; Sadeghy, K., Two-phase viscous fingering of immiscible thixotropic fluids: A numerical study, J. Non-Newton. Fluid Mech., 218, 40-52 (2015)
[33] Tripathi, M. K.; Sahu, K. C.; Karapetsas, G.; Matar, O. K., Bubble rise dynamics in a viscoplastic material, J. Non-Newton. Fluid Mech., 222, 217-226 (2015)
[34] Abedijaberi, A.; Bhatara, G.; Shaqfeh, E. S.G.; Khomami, B., A computational study of the influence of viscoelasticity on the interfacial dynamics of dip coating flow, J. Non-Newton. Fluid Mech., 166, 12-13, 614-627 (2011) · Zbl 1282.76046
[35] Xenakis, A.; Lind, S.; Stansby, P.; Rogers, B., An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows, J. Non-Newton. Fluid Mech., 218, 1-15 (2015)
[36] Castillo, E.; Baiges, J.; Codina, R., Approximation of the two-fluid flow problem for viscoelastic fluids using the level set method and pressure enriched finite element shape functions, J. Non-Newton. Fluid Mech., 225, 37-53 (2015)
[37] Fraggedakis, D.; Pavlidis, M.; Dimakopoulos, Y.; Tsamopoulos, J., On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid, J. Fluid Mech., 789, 310-346 (2016)
[38] Keunings, R., Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory, (Binding, D. M.; Walters, K., Rheology Reviews (2004), British Society of Rheology), 67-98
[39] Laso, M.; Öttinger, H. C., Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach, J. Non-Newton. Fluid Mech., 47, 1-20 (1993) · Zbl 0774.76012
[40] Cormenzana, J.; Ledda, A.; Laso, M.; Debbaut, B., Calculation of free surface flows using CONNFFESSIT, J. Rheol., 45, 1, 237-258 (2001)
[41] Grande, E.; Laso, M.; Picasso, M., Calculation of variable-topology free surface flows using CONNFFESSIT, J. Non-Newton. Fluid Mech., 113, 127-145 (2003) · Zbl 1065.76559
[42] Hulsen, M. A.; van Heel, A. P.G.; van den Brule, B. H.A. A., Simulation of viscoelastic flows using Brownian Configuration Fields, J. Non-Newton. Fluid Mech., 70, 79-101 (1997)
[43] Bajaj, M.; Bhat, P. P.; Prakash, J. R.; Pasquali, M., Multiscale simulation of viscoelastic free surface flows, J. Non-Newton. Fluid Mech., 140, 87-107 (2006) · Zbl 1143.76318
[44] Xu, X.; Ouyang, J.; Li, W.; Liu, Q., SPH simulations of 2D transient viscoelastic flows using Brownian Configuration Fields, J. Non-Newton. Fluid Mech., 208-209, 59-71 (2014)
[45] Prieto, J. L., Stochastic particle level set simulations of buoyancy-driven droplets in non-Newtonian fluids, J. Non-Newton. Fluid Mech., 226, 16-31 (2015)
[46] Barrett, J. W.; Garcke, H.; Nürnberg, R., Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow, Comput. Methods. Appl. Mech. Engrg., 267, 511-530 (2013) · Zbl 1286.76040
[47] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[48] Zahedi, S.; Tornberg, A. K., Delta function approximations in level set methods by distance function extension, J. Comput. Phys., 229, 2199-2219 (2010) · Zbl 1186.65018
[49] Bänsch, E., Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88, 2, 203-235 (2001) · Zbl 0985.35060
[50] Groß, S.; Reusken, A., An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224, 40-58 (2007) · Zbl 1261.76015
[51] Ausas, R. F.; Sousa, F. S.; Buscaglia, G. C., An improved finite element space for discontinuous pressures, Comput. Methods. Appl. Mech. Engrg., 199, 1019-1031 (2010) · Zbl 1227.76025
[52] Prieto, J. L.; Bermejo, R.; Laso, M., A semi-Lagrangian micro-macro method for viscoelastic flow calculations, J. Non-Newton. Fluid Mech., 165, 120-135 (2010) · Zbl 1274.76257
[53] Prieto, J. L.; Ilg, P.; Bermejo, R.; Laso, M., Stochastic semi-Lagrangian micro-macro calculations of Liquid Crystalline solutions in complex flows, J. Non-Newton. Fluid Mech., 165, 185-195 (2010) · Zbl 1274.76151
[54] Carpio, J.; Prieto, J. L., An anisotropic, fully adaptive algorithm for the solution of convection dominated equations with semi-Lagrangian schemes, Comput. Methods Appl. Mech. Engrg., 273, 77-99 (2014) · Zbl 1296.76080
[55] Allievi, A.; Bermejo, R., Finite element modified method of characteristics for the Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 32, 439-464 (2000) · Zbl 0955.76048
[56] Öttinger, H. C., Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (1996), Springer: Springer Berlin · Zbl 0995.60098
[57] Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory (1987), Wiley-Interscience
[58] Matsumoto, M.; Nishimura, T., Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8, 3-30 (1998) · Zbl 0917.65005
[59] Galassi, M.; Davies, J.; Theiler, J.; Gough, B.; Jungman, G.; Booth, M.; Rossi, F., GNU Scientific Library Reference Manual (2009), Network Theory Limited, URL http://www.gnu.org/software/gsl/
[60] Halin, P.; Lielens, G.; Keunings, R.; Legat, V., The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations, J. Non-Newton. Fluid Mech., 79, 387-403 (1998) · Zbl 0957.76066
[61] Gallez, X.; Halin, P.; Lielens, G.; Keunings, R.; Legat, V., The adaptive Lagrangian Particle Method for macroscopic and micro-macro computations of time-dependent viscoelastic flows, Comput. Methods. Appl. Mech. Engrg., 180, 345-364 (1999) · Zbl 0966.76076
[63] Ohtake, Y.; Belyaev, A.; Seidel, H.-P., 3D scattered data interpolation and approximation with multilevel compactly supported RBFs, Graph. Models, 67, 150-165 (2005) · Zbl 1078.68817
[64] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press · Zbl 1075.65021
[65] Prieto, J. L., An RBF-reconstructed, polymer stress tensor for stochastic, particle-based simulations of non-Newtonian, multiphase flows, J. Non-Newton. Fluid Mech., 227, 90-99 (2016)
[66] Groß, S.; Reusken, A., Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, SIAM J. Numer. Anal., 45, 1679-1700 (2007) · Zbl 1141.76037
[69] Golub, G. H.; Loan, C. F.V., Matrix Computations (2012), Johns Hopkins University Press
[70] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics · Zbl 1002.65042
[71] Dean, E. J.; Glowinski, R., On some finite element methods for the numerical simulation of incompressible viscous flow, (Gunzburger, M. D.; Nicolaides, R. A., Incompressible Computational Fluid Dynamics (1993), Cambridge University Press: Cambridge University Press New York), 109-150 · Zbl 1189.76447
[72] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows (1989), Academic Press · Zbl 0697.76031
[73] Elman, H.; Howle, V.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227, 1790-1808 (2008) · Zbl 1290.76023
[74] Davis, T. A.; Hager, W. W., Dynamic supernodes in sparse cholesky update/downdate and triangular solves, ACM Trans. Math. Software, 35, 4, 27:1-27:23 (2009)
[75] Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Internat. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) · Zbl 1273.76276
[76] Ohta, M.; Sussman, M., The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid, Phys. Fluids, 24, 11, Article 112101 pp. (2012)
[77] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, drops, and particles (1978), Academic Press
[78] Lind, S. J.; Phillips, T. N., The effect of viscoelasticity on a rising gas bubble, J. Non-Newton. Fluid Mech., 165, 852-865 (2010) · Zbl 1274.76331
[79] Wilson, H. J., Open mathematical problems regarding non-Newtonian fluids, Nonlinearity, 25, R45-R51 (2012) · Zbl 1237.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.