×

Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations. (English) Zbl 1436.65149

Summary: A Legendre-tau-Galerkin method is developed for nonlinear evolution problems and its multiple interval form is also considered. The Legendre tau method is applied in time and the Legendre/Chebyshev-Gauss-Lobatto points are adopted to deal with the nonlinear term. By taking appropriate basis functions, it leads to a simple discrete equation. The proposed method enables us to derive optimal error estimates in \(L^2\)-norm for the Legendre collocation under the two kinds of Lipschitz conditions, respectively. Our method is also applied to the numerical solutions of some nonlinear partial differential equations by using the Legendre Galerkin and Chebyshev collocation in spatial discretization. Numerical examples are given to show the efficiency of the methods.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65D30 Numerical integration

Software:

RODAS
Full Text: DOI

References:

[1] Bernardi, C.; Maday, Y., Spectral methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, Vol. V, Techniques of Scientific Computing (Part 2) (1997), North-Holland: North-Holland Amsterdam), 209-486 · Zbl 0884.65001
[2] Calvo, M.; Laburta, M. P.; Montijano, J. I.; Rández, L., Runge-Kutta projection methods with low dispersion and dissipation errors, Adv. Comput. Math., 41, 231-251 (2015) · Zbl 1308.65115
[3] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods, Fundamentals in Single Domains, Scientific Computation (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1093.76002
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation (2007), Springer: Springer Berlin · Zbl 1121.76001
[5] Feng, K., Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math., 4, 279-289 (1986) · Zbl 0596.65090
[6] Guo, B. Y., Spectral Methods and Their Applications (1998), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0906.65110
[7] Guo, B. Y.; Wang, Z. Q., Numerical integration based on Laguerre-Gauss interpolation, Comput. Methods Appl. Mech. Eng., 196, 3726-3741 (2007) · Zbl 1173.65312
[8] Guo, B. Y.; Wang, Z. Q., Legendre-Gauss collocation methods for ordinary differential equations, Adv. Comput. Math., 30, 249-280 (2009) · Zbl 1162.65375
[9] Guo, B. Y.; Wang, Z. Q., A spectral collocation method for solving initial value problems of first order ordinary differential equations, Discrete Contin. Dyn. Syst., Ser. B, 14, 1029-1054 (2010) · Zbl 1205.65225
[10] Guo, B. Y.; Wang, Z. Q.; Tian, H. J.; Wang, L. L., Integration processes of ordinary differential equations based on Laguerre-Radau interpolations, Math. Comput., 77, 181-199 (2008) · Zbl 1127.65047
[11] Guo, R.; Xia, Y.; Xu, Y., Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations, J. Comput. Phys., 338, 269-284 (2017) · Zbl 1415.65153
[12] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations. II, Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14 (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0729.65051
[13] Higham, D. J., Analysis of the Enright-Kamel partitioning method for stiff ordinary differential equations, IMA J. Numer. Anal., 9, 1-14 (1989) · Zbl 0659.65069
[14] Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, The initial value problem · Zbl 0745.65049
[15] Li, H. Y.; Wu, H.; Ma, H. P., The Legendre Galerkin-Chebyshev collocation method for Burgers-like equations, IMA J. Numer. Anal., 23, 109-124 (2003) · Zbl 1020.65072
[16] Liu, W. J.; Sun, J. B.; Wu, B. Y., Space-time spectral method for the two-dimensional generalized sine-Gordon equation, J. Math. Anal. Appl., 427, 787-804 (2015) · Zbl 1314.65132
[17] Lui, S. H., Legendre spectral collocation in space and time for PDEs, Numer. Math., 136, 75-99 (2017) · Zbl 1365.65228
[18] Ma, H. P.; Sun, W. W., A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38, 1425-1438 (2000) · Zbl 0986.65095
[19] Ma, H. P.; Sun, W. W., Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 39, 1380-1394 (2001) · Zbl 1008.65070
[20] Meng, T. T.; Yi, L. J., An \(h - p\) version of the continuous Petrov-Galerkin method for nonlinear delay differential equations, J. Sci. Comput., 74, 1091-1114 (2018) · Zbl 1398.65190
[21] Shan, Y. Y.; Liu, W. J.; Wu, B. Y., Space-time Legendre-Gauss-Lobatto collocation method for two-dimensional generalized sine-Gordon equation, Appl. Numer. Math., 122, 92-107 (2017) · Zbl 1375.65139
[22] Shen, J.; Wang, L. L., Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57, 710-720 (2007) · Zbl 1118.65111
[23] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods, Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41 (2011), Springer: Springer Heidelberg · Zbl 1227.65117
[24] Tal-Ezer, H., Spectral methods in time for hyperbolic equations, SIAM J. Numer. Anal., 23, 11-26 (1986) · Zbl 0613.65091
[25] Tal-Ezer, H., Spectral methods in time for parabolic problems, SIAM J. Numer. Anal., 26, 1-11 (1989) · Zbl 0668.65090
[26] Tang, J. G.; Ma, H. P., Single and multi-interval Legendre τ-methods in time for parabolic equations, Adv. Comput. Math., 17, 349-367 (2002) · Zbl 1002.65111
[27] Tang, J. G.; Ma, H. P., Single and multi-interval Legendre spectral methods in time for parabolic equations, Numer. Methods Partial Differ. Equ., 22, 1007-1034 (2006) · Zbl 1103.65107
[28] Tang, J. G.; Ma, H. P., A Legendre spectral method in time for first-order hyperbolic equations, Appl. Numer. Math., 57, 1-11 (2007) · Zbl 1175.65121
[29] Wang, Z. Q.; Guo, B. Y., Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations, J. Sci. Comput., 52, 226-255 (2012) · Zbl 1255.65133
[30] Wu, H.; Ma, H. P.; Li, H. Y., Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAM J. Numer. Anal., 41, 659-672 (2003), (electronic) · Zbl 1050.65083
[31] Yi, L. J.; Wang, Z. Q., Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations, Discrete Contin. Dyn. Syst., Ser. B, 19, 299-322 (2014) · Zbl 1282.65126
[32] Yi, L. J.; Wang, Z. Q., Legendre-Gauss-type spectral collocation algorithms for nonlinear ordinary/partial differential equations, Int. J. Comput. Math., 91, 1434-1460 (2014) · Zbl 1306.65238
[33] Zhang, C.; Gu, D. Q.; Wang, Z. Q.; Li, H. Y., Efficient space-time spectral methods for second-order problems on unbounded domains, J. Sci. Comput., 72, 679-699 (2017) · Zbl 1377.65139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.