×

A linearly implicit structure-preserving scheme for the Camassa-Holm equation based on multiple scalar auxiliary variables approach. (English) Zbl 1436.65104

Summary: In this paper, we present a linearly implicit energy-preserving scheme for the Camassa-Holm equation by using the multiple scalar auxiliary variables approach, which is first developed to construct efficient and robust energy stable schemes for gradient systems. The Camassa-Holm equation is first reformulated into an equivalent system by utilizing the multiple scalar auxiliary variables approach, which inherits a modified energy. Then, the system is discretized in space aided by the standard Fourier pseudo-spectral method and a semi-discrete system is obtained, which is proven to preserve a semi-discrete modified energy. Subsequently, the linearized Crank-Nicolson method is applied for the resulting semi-discrete system to arrive at a fully discrete scheme. The main feature of the new scheme is to form a linear system with a constant coefficient matrix at each time step and produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution. Several numerical results are addressed to confirm accuracy and efficiency of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Cai, W.; Jiang, C.; Wang, Y.; Song, Y., Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions, J. Comput. Phys., 395, 166-185 (2019) · Zbl 1452.65393 · doi:10.1016/j.jcp.2019.05.048
[2] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3] Camassa, R.; Holm, D.; Hyman, J., A new integrable shallow water equation, Adv. Appl. Mech., 31, 1-33 (1994) · Zbl 0808.76011 · doi:10.1016/S0065-2156(08)70254-0
[4] Chen, J.; Qin, M., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 12, 193-204 (2001) · Zbl 0980.65108
[5] Cheng, Q.; Shen, J., Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM J. Sci. Comput., 40, A3982-A4006 (2018) · Zbl 1403.65045 · doi:10.1137/18M1166961
[6] Cohen, D.; Raynaud, X., Geometric finite difference schemes for the generalized hyperelastic-rod wave equation, J. Comput. Appl. Math., 235, 1925-1940 (2011) · Zbl 1350.74026 · doi:10.1016/j.cam.2010.09.015
[7] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[8] Dahlby, M.; Owren, B., A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340 (2011) · Zbl 1246.65240 · doi:10.1137/100810174
[9] Eidnes, S., Li, L., Sato, S.: Linearly implicit structure-preserving schemes for Hamiltonian systems (2019). arXiv preprint arXiv:1901.03573 · Zbl 1456.65063
[10] Gong, Y.; Cai, J.; Wang, Y., Multi-symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys., 16, 35-55 (2014) · Zbl 1388.65119 · doi:10.4208/cicp.090313.041113a
[11] Gong, Y.; Wang, Y., An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs, Commun. Comput. Phys., 20, 1313-1339 (2016) · Zbl 1388.65120 · doi:10.4208/cicp.231014.110416a
[12] Gong, Y.; Zhao, J.; Yang, X.; Wang, Q., Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40, B138-B167 (2018) · Zbl 1457.65050 · doi:10.1137/17M1111759
[13] Holden, H.; Raynaud, X., Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J. Numer. Anal., 44, 1655-1680 (2006) · Zbl 1122.76065 · doi:10.1137/040611975
[14] Hong, Q.; Gong, Y.; Lv, Z., Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa-Holm equation, Appl. Math. Comput., 346, 86-95 (2019) · Zbl 1429.65241
[15] Jiang, C.; Wang, Y.; Gong, Y., Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation, Appl. Numer. Math., 151, 85-97 (2020) · Zbl 1439.37079 · doi:10.1016/j.apnum.2019.12.016
[16] Kalisch, H.; Lenells, J., Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos Solitons Fractals, 25, 287-298 (2005) · Zbl 1136.35448 · doi:10.1016/j.chaos.2004.11.024
[17] Lenells, J., Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equ., 271, 393-430 (2005) · Zbl 1082.35127 · doi:10.1016/j.jde.2004.09.007
[18] Matsuo, T.; Yamaguchi, H., An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J. Comput. Phys., 228, 4346-4358 (2009) · Zbl 1169.65097 · doi:10.1016/j.jcp.2009.03.003
[19] Miyatake, Y.; Matsuo, T., Energy-preserving \(H^1\)-Galerkin schemes for shallow water wave equations with peakon solutions, Phys. Lett. A, 376, 2633-2639 (2012) · Zbl 1266.65168 · doi:10.1016/j.physleta.2012.07.022
[20] Shen, J.; Tang, T., Spectral and High-Order Methods with Applications (2006), Beijing: Science Press, Beijing · Zbl 1234.65005
[21] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181 · doi:10.1016/j.jcp.2017.10.021
[22] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 474-506 (2019) · Zbl 1422.65080 · doi:10.1137/17M1150153
[23] Xu, Y.; Shu, C-W, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46, 1998-2021 (2008) · Zbl 1173.65063 · doi:10.1137/070679764
[24] Yang, X.; Zhao, J.; Wang, Q., Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333, 104-127 (2017) · Zbl 1375.82121 · doi:10.1016/j.jcp.2016.12.025
[25] Zhao, J.; Yang, X.; Gong, Y.; Wang, Q., A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals, Comput. Methods Appl. Mech. Eng., 318, 803-825 (2017) · Zbl 1439.76124 · doi:10.1016/j.cma.2017.01.031
[26] Zhu, H.; Song, S.; Tang, Y., Multi-symplectic wavelet collocation method for the Schrödinger equation and the Camassa-Holm equation, Comput. Phys. Commun., 182, 616-627 (2011) · Zbl 1217.65235 · doi:10.1016/j.cpc.2010.11.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.