×

Random walks and Lévy processes as rough paths. (English) Zbl 1436.60087

‘The paper focuses on several questions regarding Lévy processes and random walks in homogeneous groups, with a particular focus on apllications to rough path theory.’ The author considers ‘random walks and Lévy processes in a homogeneous group \(G\). For all \(p>0\), (he) completely characterise (almost) all \(G\)-valued Lévy processes whose sample paths have finite \(p\)-variation, and give(s) sufficient conditions under which a sequence of \(G\)-valued random walks converges in law to a Lévy process in \(p\)-variation topology. In the case that \(G\) is the free nilpotent Lie group over \(\mathbb R^d\), so that processes of finite \(p\)-variation are identified with rough paths, (he) demonstrate(s) applications of (his) results to weak convergence of stochastic flows and provide(s) a Lévy-Khintchine formula for the characteristic function of the signature of a Lévy process. At the heart of (his) analysis is a criterion for tightness of \(p\)-variation for a collection of càdlàg strong Markov processes’. In contrast to earlier contributions on the subject, the proofs rely on the approximation of the Lévy process by a sequence of random walks. A crucial result for the analysis generalizes a theorem of M. Manstavicius on strong \(p\)-variation of Markov processes.

MSC:

60L20 Rough paths
60G51 Processes with independent increments; Lévy processes
60L50 Rough partial differential equations

References:

[1] Applebaum, D.: Probability on compact Lie groups. Probability Theory and Stochastic Modelling. With a Foreword by Herbert Heyer, vol. 70, pp. xxvi+217. Springer, Cham. ISBN: 978-3-319-07841-0; 978-3-319-07842-7. doi:10.1007/978-3-319-07842-7 (2014) · Zbl 1302.60007
[2] Baudoin, F.: An Introduction to the Geometry of Stochastic Flows. Imperial College Press, London, pp. x+140. ISBN: 1-86094-481-7. doi:10.1142/9781860947261 (2004) · Zbl 1085.60002
[3] Billingsley, P.: Convergence of probability measures. Second. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication, pp. x+277. Wiley, Inc., New York, . ISBN: 0-471-19745-9. doi:10.1002/9780470316962 (1999) · Zbl 0944.60003
[4] Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961) · Zbl 0097.33703
[5] Boedihardjo, H., Geng, Xi., Lyons, T., Yang, D.: The signature of a rough path: uniqueness. Adv. Math. 293 720-737. ISSN: 0001- 8708. doi:10.1016/j.aim.2016.02.011 (2016) · Zbl 1347.60094
[6] Bretagnolle, J.: \[p\] p-variation de fonctions aléatoires. II. Processus à accroissements indépendants”. Séminaire de Probabilités, VI (Univ. Strasbourg, année universitaire 1970-1971). Lecture Notes in Mathematics. Springer, Berlin, vol. 258, pp. 64-71 (1972) · Zbl 0273.60052
[7] Breuillard, E., Friz, P., Huesmann, M.: From random walks to rough paths. Proc. Am. Math. Soc. 137(10), 3487-3496. ISSN: 0002-9939. doi:10.1090/S0002-9939-09-09930-4 (2009) · Zbl 1179.60017
[8] Bruned, Y., Chevyrev, I., Friz, P.K., Preiss, R.: A Rough Path Perspective on Renormalization. ArXiv e-prints. arXiv:1701.01152 [math.PR] (2017) · Zbl 1436.60086
[9] Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. ArXiv e-prints. arXiv:1610.08468 [math.RA] (2016) · Zbl 1481.16038
[10] Cass, T., Ogrodnik, M.: Tail estimates for Markovian rough paths. ArXiv e-prints. To appear in Annals of Probability. arXiv:1411.5189 [math.PR] (2014) · Zbl 06786086
[11] Chevyrev, I., Lyons, T.: Characteristic functions of measures on geometric rough paths. Ann. Probab. 44(6), 4049-4082. ISSN: 0091-1798. doi:10.1214/15-AOP1068 (2016) · Zbl 1393.60008
[12] Chevyrev, I., Ogrodnik, M.: A support and density theorem for Markovian rough paths. ArXiv e-prints. arXiv:1701.03002 [math.PR] (2017) · Zbl 1430.60092
[13] Feinsilver, P: Processes with independent increments on a Lie group. Trans. Am. Math. Soc. 242, 73-121. ISSN: 0002-9947 (1978) · Zbl 0403.60006
[14] Flint, G., Hambly, B., Lyons, T.: Discretely sampled signals and the rough Hoff process. Stochastic Process. Appl. 126(9), 2593-2614. ISSN: 0304-4149. doi:10.1016/j.spa.2016.02.011 (2016) · Zbl 1348.60058
[15] Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. Mathematical Notes, vol. 28, pp. xii+285. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo. ISBN: 0-691-08310-X (1982) · Zbl 0508.42025
[16] Friz, P., Oberhauser, H.: Rough path limits of the Wong-Zakai type with a modified drift term. J. Funct. Anal. 256(10), 3236-3256. ISSN: 0022-1236. doi:10.1016/j.jfa.2009.02.010 (2009) · Zbl 1169.60011
[17] Friz, P., Shekhar, A.: General rough integration, Levy rough paths and a Levy-Kintchine type formula. ArXiv e-prints. To appear in Annals of Probability. arXiv:1212.5888 [math.PR] (2012) · Zbl 1412.60103
[18] Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths. In: Cambridge Studies in Advanced Mathematics, vol. 120. pp. xiv+656. Cambridge University Press, Cambridge. ISBN: 978-0-521- 87607-0 (2010) · Zbl 1193.60053
[19] Friz, P., Victoir, N.: On uniformly subelliptic operators and stochastic area. Probab. Theory Relat. Fields 142(3-4), 475-523. ISSN: 0178-8051. doi:10.1007/s00440-007-0113-y (2008) · Zbl 1151.31009
[20] Gīhman, I.I., Skorohod, A.V.: The theory of stochastic processes. I. Translated from the Russian by S. Kotz, Die Grundlehren der mathematischen Wissenschaften, Band 210, pp. viii+570. Springer, New York (1974) · Zbl 0291.60019
[21] Gubinelli, M.: Ramification of rough paths. J. Differ. Equ. 248(4), 693-721. ISSN: 0022-0396. doi:10.1016/j.jde.2009.11.015 (2010) · Zbl 1315.60065
[22] Hairer, M., Kelly, D.: Geometric versus non-geometric rough paths. Ann. Inst. Henri Poincaré Probab. Stat. 51(1), 207-251. ISSN: 0246- 0203. doi:10.1214/13-AIHP564 (2015) · Zbl 1314.60115
[23] Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269-504. ISSN: 0020-9910. doi:10.1007/s00222-014-0505-4 (2014) · Zbl 1332.60093
[24] Hambly, B., Lyons, T.: Uniqueness for the signature of a path of bounded variation and the reduced path group. Ann. Math. 171(1), 109-167. ISSN: 0003-486X. doi:10.4007/annals.2010.171.109 (2010) · Zbl 1276.58012
[25] Hebisch, W., Sikora, A.: A smooth subadditive homogeneous norm on a homogeneous group. Stud. Math. 96(3), 231-236. ISSN: 0039-3223 (1990) · Zbl 0723.22007
[26] Hunt, G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, 264-293. ISSN: 0002-9947 (1956) · Zbl 0073.12402
[27] Kallenberg, O.: Foundations of modern probability. Probability and its Applications (New York), pp. xii+523. Springer, New York. ISBN: 0-387-94957-7 (1997) · Zbl 0892.60001
[28] Kolokoltsov, V.N.: Markov processes, semigroups and generators. de Gruyter Studies in Mathematics, vol. 38, pp. xviii+430. Walter de Gruyter & Co., Berlin. ISBN: 978-3-11-025010-7 (2011) · Zbl 1220.60003
[29] Kunita, H.: Some problems concerning Lévy processes on Lie groups. Stochastic analysis (Ithaca, NY, 1993). In: Proceedings of Symposium. Pure American Mathematical Society, Providence, RI, vol. 57, pp. 323-341. doi:10.1090/pspum/057/1335479 (1995) · Zbl 0829.60063
[30] Liao, M.: Lévy processes in Lie groups. Cambridge Tracts in Mathematics, vol. 162, pp. x+266. Cambridge University Press, Cambridge. ISBN: 0- 521-83653-0. doi:10.1017/CBO9780511546624 (2004) · Zbl 1076.60004
[31] Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths. Lecture Notes in Mathematics, vol. 1908, pp. xviii+109. Springer, Berlin. ISBN: 978-3-540-71284-8; 3-540-71284-4 (2007) · Zbl 1176.60002
[32] Manstavičius, M.: \[p\] p-variation of strong Markov processes. Ann. Probab. 32(3A), 2053-2066. ISSN: 0091-1798. doi:10.1214/009117904000000423 (2004) · Zbl 1052.60058
[33] McShane, E.J.: Stochastic differential equations and models of random processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory. Univ. California Press, Berkeley, California, pp. 263-294 (1972) · Zbl 0283.60061
[34] Porter, J.E.: Helly’s selection principle for functions of bounded P-variation. Rocky Mt. J. Math. 35(2), 675-679. ISSN: 0035-7596. doi:10.1216/rmjm/1181069753 (2005) · Zbl 1092.26003
[35] Sussmann, H.J.: Limits of the Wong-Zakai Type with a Modified Drift Term. Stochastic Analysis. Academic Press, Boston (1991) · Zbl 0733.60082
[36] Williams, D.R.E.: Path-wise solutions of stochastic differential equations driven by Lévy processes. Rev. Mat. Iberoamericana 17(2), 295-329. ISSN: 0213-2230. doi:10.4171/RMI/296 (2001) · Zbl 1002.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.