×

Newton-Okounkov polytopes of flag varieties for classical groups. (English) Zbl 1436.52015

Uniformly geometric valuations on the corresponding complete flag varieties are defined for classical groups \(\mathrm{SL}_n(\mathbb{C})\), \(\mathrm{SO}_n(\mathbb{C})\) and \(\mathrm{Sp}_{2n}(\mathbb{C})\). The valuation in every type is combinatorially related to the Gelfand-Zetlin pattern in the same type and comes from a natural coordinate system on the open Schubert cell. In types A and C, FFLV are exhibited as Newton-Okounkov polytopes with respect to this valuation. The result is new in type C. Low-dimensional examples are computed in types B and D. Further directions of research are opened, as the assumption that the valuation and the corresponding Newton-Okounkov polytopes might give a tool for describing FFLV bases in types B and D.

MSC:

52B45 Dissections and valuations (Hilbert’s third problem, etc.)
05E18 Group actions on combinatorial structures
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] Ardila, F.; Bliem, Th; Salazar, D., Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes, J. Comb. Theory Ser. A, 118, 2454-2462 (2011) · Zbl 1234.52009
[2] Backhaus, T.; Kus, D., The PBW filtration and convex polytopes in type \[B B\], J. Pure Appl. Algebra, 223, 245-276 (2019) · Zbl 1464.17011
[3] Belyaev, A.; Avramenko, S.; Agakishiev, G.; Pechenov, V.; Rikhvitsky, V., On the initial approximation of charged particle tracks in detectors with linear sensing elements, Nucl. Instrum. Methods Phy. Res., 938, 1-4 (2019) · doi:10.1016/j.nima.2019.05.082
[4] Berenstein, AD; Zelevinsky, AV, Tensor product multiplicities and convex polytopes in partition space, J. Geom. Phys., 5, 453-472 (1989) · Zbl 0712.17006
[5] Bernstein, DN, The number of roots of a system of equations, Funct. Anal. Appl., 9, 183-185 (1975) · Zbl 0328.32001
[6] Brion, M.: Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, 33-85. Trends Math. Birkhäuser, Basel (2005) · Zbl 1487.14105
[7] Brion, M., Groupe de Picard et nombres caracteristiques des varietes spheriques, Duke Math J., 58, 397-424 (1989) · Zbl 0701.14052
[8] De Concini, C., Procesi, C.: Complete symmetric varieties II Intersection theory, Advanced Studies in Pure Mathematics 6 (1985), Algebraic groups and related topics, 481-513 · Zbl 0596.14041
[9] Feigin, E.; Fourier, Gh; Littelmann, P., PBW filtration and bases for irreducible modules in type \[A_n\] An, Transform. Groups, 165, 71-89 (2011) · Zbl 1237.17011
[10] Feigin, E., Fourier, Gh, Littelmann, P.: PBW filtration and bases for for symplectic Lie algebras. IMRN (24):5760-5784 (2011) · Zbl 1233.17007
[11] Feigin, E.; Fourier, Gh; Littelmann, P., Favourable modules: Filtrations, polytopes, Newton-Okounkov bodies and flat degenerations, Transform. Groups, 22, 321-352 (2017) · Zbl 1461.14068
[12] Fujita, N., Oya, H.: A comparison of Newton-Okounkov polytopes of Schubert varieties. J. London Math. Soc. 2, (2017). https://doi.org/10.1112/jlms.12059 · Zbl 1427.17024
[13] Fulton, W., Harris, J.: Representation theory: a first course. Springer, New York (2004)
[14] Gornitskii, A. A.: Essential Signatures and Canonical Bases for Irreducible Representations of \[D_4\] D4, preprint arXiv:1507.07498 [math.RT] · Zbl 1377.17010
[15] Kaveh, K., Crystal basis and Newton-Okounkov bodies, Duke Math. J., 164, 2461-2506 (2015) · Zbl 1428.14083
[16] Kaveh, K., Khovanskii, A.: Newton convex bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925-978 (2012) · Zbl 1270.14022
[17] Kaveh, K.; Khovanskii, AG, Convex bodies associated to actions of reductive groups, Moscow Math. J., 12, 369-396 (2012) · Zbl 1284.14061
[18] Kazarnovskii, B.Ya.: Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations. Funct. Anal. Appl. 21(4), 319-321 (1987) · Zbl 0662.22014
[19] Kiritchenko, V., Geometric mitosis, Math. Res. Lett., 23, 1069-1096 (2016) · Zbl 1356.14040
[20] Kiritchenko, V., Newton-Okounkov polytopes of flag varieties, Transform. Groups, 22, 387-402 (2017) · Zbl 1396.14047
[21] Khovanskii, AG, Newton polyhedra, and the genus of complete intersections, Funct. Anal. Appl., 12, 38-46 (1978) · Zbl 0406.14035
[22] Kushnirenko, AG, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32, 1-31 (1976) · Zbl 0328.32007
[23] Lazarsfeld, R.; Mustata, M., Convex Bodies Associated to Linear Series, Annales Scientifiques de l’ENS, 42, 783-835 (2009) · Zbl 1182.14004
[24] Makhlin, I.: FFLV-type monomial bases for type \[BB\], preprint arXiv:1610.07984 [math.RT] · Zbl 1472.17033
[25] Molev, A.I.: Gelfand-Tsetlin bases for classical Lie algebras, Handbook of Algebra (M. Hazewinkel, Ed.), 4, Elsevier, Amsterdam, 2006, 109-170 · Zbl 1211.17009
[26] Okounkov, A., Note on the Hilbert polynomial of a spherical variety, Funct. Anal. Appl., 31, 138-140 (1997) · Zbl 0928.14032
[27] Okounkov, A., Multiplicities and Newton polytopes, Kirillov’s seminar on representation theory, Am. Math. Soc. Transl. Ser., 2, 231-244 (1998) · Zbl 0920.20032
[28] Zhelobenko, DP, An analogue of the Gel’fand-Tsetlin basis for symplectic Lie algebras, Russ. Math. Surveys, 42, 247-248 (1987) · Zbl 0659.17006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.